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In this pre-talk | will discuss the following topics:
» The statement of Malle's conjecture;
» The structure of the Heisenberg group;

» Central extensions and some basic Galois cohomology.
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Let K/Q be an extension of degree n and L its normal closure.

Then Gal(L/Q) acts on the n embeddings K — Q. After labelling the
embeddings, we get a homomorphism from Gal(L/Q) to S,,.

By abuse of notation, define Gal(K/Q) C S, to be the image of this
homomorphism, which is a transitive subgroup of S,,.

This subgroup is only well-defined up to conjugation: relabelling the
embeddings gives a conjugate subgroup.
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Statement of Malle’s conjecture

For a transitive subgroup G C S,,, consider the counting function
N(G, X) == #{K/Q: [K : Q] = n, Gal(K/Q) Zperm. gr. G, Ak < X},

where Ay /g denotes the discriminant and K is taken inside a fixed
algebraic closure Q.

Here the isomorphism is as permutation groups. Equivalently, G and
Gal(K/Q) are conjugate subgroups of S,,.

Conjecture 1 (Malle’s conjecture)

There exists a constant c(G) > 0 such that

N(G,X) ~ c(G)X*C)(log X)b(C)~1,

Malle gave explicit values for the constants a(G) and b(G).
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How to compute a(G) and b(G)

Define forc € G C §,
ind(co) := n — |{orbits of o}|

and define

a(G)!:= mingeg\ {iayind(o).
Interpretation: any prime p dividing the discriminant of a G-extension
occurs with exponent at least a(G) 1.

Furthermore, Malle proposed
b(G) := #{C € Conj(G) : ind(C) = a(G) !}/ ~,

where two conjugacy classes C and C’ are equivalent if they are in the
same orbit under a certain action of Gal(Q/Q) on Conj(G).
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The Heisenberg group

Let ¢ be an odd prime number. The Heisenberg group Heis, is the
multiplicative group of upper triangular matrices with ones on the
diagonal and entries in Fy:

1
0
0

O = %
=% %

For £ = 2 we get Dy, which behaves slightly different than odd /.

Theorem 1 (Basic facts about Heis)

Let ¢ be an odd prime. We have the following
> every element of Heisy has order ¢;
> the centre Z(Heisy) of Heisy is of size ¢;

> there is an exact sequence
1 — F; — Heis, — F2 — 1

with the image of F, landing in Z(Heisy).



Subfield diagram of Heis;




The Malle constant for Heis;

What transitive subgroups of Sg are isomorphic to Heisz?



The Malle constant for Heis;

What transitive subgroups of Sg are isomorphic to Heisz?

Note that such a subgroup has a transitive action on 9 elements, and
recall that if G acts transitively on a set X, this action is isomorphic to G
acting on G/H for some subgroup H.



The Malle constant for Heis;

What transitive subgroups of Sg are isomorphic to Heisz?

Note that such a subgroup has a transitive action on 9 elements, and
recall that if G acts transitively on a set X, this action is isomorphic to G
acting on G/H for some subgroup H.

There are 12 subgroups H of Heisz of order 3, so that #(Heis3/H) = 9.



The Malle constant for Heis;

What transitive subgroups of Sg are isomorphic to Heisz?

Note that such a subgroup has a transitive action on 9 elements, and
recall that if G acts transitively on a set X, this action is isomorphic to G
acting on G/H for some subgroup H.

There are 12 subgroups H of Heisz of order 3, so that #(Heis3/H) = 9.

Fortunately, Heisz is a very symmetric group so all 12 subgroups H of
order 3 lead to the same conjugacy class of subgroups in Sg. Concretely,
generators are

(1,2,9)(3,4,5)(6,7,8), (3,4,5)(6,8,7), (1,4,7)(2,5,8)(3,6,9),

so a(Heis3) = 4, b(Heis3) = 1.



The Malle constant for Heis;

What transitive subgroups of Sg are isomorphic to Heisz?

Note that such a subgroup has a transitive action on 9 elements, and
recall that if G acts transitively on a set X, this action is isomorphic to G
acting on G/H for some subgroup H.

There are 12 subgroups H of Heisz of order 3, so that #(Heis3/H) = 9.

Fortunately, Heisz is a very symmetric group so all 12 subgroups H of
order 3 lead to the same conjugacy class of subgroups in Sg. Concretely,
generators are

(1,2,9)(3,4,5)(6,7,8), (3,4,5)(6,8,7), (1,4,7)(2,5,8)(3,6,9),
so a(Heis3) = 4, b(Heis3) = 1. Hence, conjecturally, there is ¢ > 0 with

N(Heisz, X) ~ cX/*.



How to make Heis; over Q

In the remainder of the slides we will investigate how to realize Heis3 as a
Galois group over Q.



How to make Heis; over Q

In the remainder of the slides we will investigate how to realize Heis3 as a
Galois group over Q.

Suppose that we are given two linearly independent characters
X X' Gg — Fs.



How to make Heis; over Q

In the remainder of the slides we will investigate how to realize Heis3 as a
Galois group over Q.

Suppose that we are given two linearly independent characters
X X' Gg — Fs.

We will develop some general tools to answer the following question:



How to make Heis; over Q

In the remainder of the slides we will investigate how to realize Heis3 as a
Galois group over Q.

Suppose that we are given two linearly independent characters
X X' Gg — Fs.

We will develop some general tools to answer the following question:

when does there exist a normal, degree 27 extension K/Q containing
Q(x) and Q(x’) such that Gal(K/Q) = Heis3?
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Central extensions

Recall that we had an exact sequence
1 — F; — Heis; — F2 — 1

with the image of Fy landing in Z(Heis,).

More general, a central extension of G by A is an exact sequence
1-A—-E—-G—1

with A abelian and A C Z(E).

Isomorphism classes of central extensions are in correspondence with
elements of the second cohomology group H?(G, A), where G acts
trivially on A.

Theorem 2 (Heis; as a central extension)

Let x1, X2 : IF% — [y be the natural projections. Then the Heisenberg
extensions (i.e. those with E = Heisy) correspond to the non-trivial
multiples of (v, w) — x1(v) - x2(w) inside H?(F2,F,).
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Inflation—restriction exact sequence

Let G be a group, N a normal subgroup and let A be a G-module. There
is a long exact sequence

0= HY(G/N,AVY 25 HY(G, A) 1= HY(N, A)S/N f2ms,
H2(G /N, ANY I 1H2(G, A),
where AN denotes the fixed points, and G/N acts on H*(N, A) by
sending a 1-cocycle f : N — Ato (g f)(n) = g - (g ng).
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We apply this with G = Gg, N the normal subgroup of Gg corresponding
to the bicyclic extension M := Q(x, x’) and A = F, with trivial action.

In this case we have

HY (N, A)¢/N = Hom(Gy, F)*'M/Q)
={p: Gy —TFy:ploro™) = p(7) for T € Gy, 0 € Gy}

To p € Hom(Gp, )% (M/Q) we attach the central extension
1 — Gal(M(p)/M) — Gal(M(p)/Q) — Gal(M/Q) — 1,

since M(p) is a Galois extension over Q.

Using p to identify Gal(M(p)/M) = F,, we naturally get a class in
H?(Gal(M/Q),F;). This is the map trans.
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inf

0 — Hom(Gal(M/Q),F;) — Hom(Gg, F¢)
5 Hom( Gy, )% (M/Q) 220 12(Gal(M/Q), Fy) 25 H?(Gg, Fy).

We do not want all elements p € Hom( G, F,)'(M/@) but only those
corresponding to Heisenberg extensions.

These are precisely those p that map to a non-trivial multiple of the
2-cocycle 6, given by (v, w) — x(v) - x'(w).

The first terms of the exact sequence are not too interesting: if we twist
p by X : Gp — Fy (i.e. consider p + X), we get another invariant
character that maps to the same element in H?(Gal(M/Q),F,).

Furthermore, the characters x and ’ are trivial when restricted to M.
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But the end of the sequence

0 — Hom(Gal(M/Q), F) 2 Hom(Gg, Fy)
2 Hom( G, Fp)®M/Q) 220 12(Gal(M/Q), Fy) 2 H2(Gg, Fy)

is interesting!

If we are given the 2-cocycle 6, ,/, when does it come from a character
p € Hom( G, Fy)®(M/Q) (i e there exists a Heisenberg extensions
containing M)?

By exactness, these are precisely those 6, ,+ that vanish in H?(Gg,Fy) or
equivalently in H?(Gg,,F;) for all places v of Q by class field theory.

Theorem 3 (Realizing Heis; as Galois group)

There exists a Heisenberg extension containing M if and only if all
ramified primes (not equal to £) of M have residue field degree 1.
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Happy April Fools' Day!



