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Introduction

Class groups were first studied by Gauss in the language of binary
quadratic forms.

Recently, class groups have gotten a great deal of attention from the
standpoint of arithmetic statistics, where one strives to prove results on
the “average” behavior of arithmetic objects.

One of the leading problems in this area are the conjectures of Cohen and
Lenstra on the “average” behavior of class groups in the family of
imaginary (or real) quadratic number fields ordered by discriminant.
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Class groups

Let K be a number field. Every non-zero fractional ideal I of K can
uniquely be factored as

I =
∏

p prime of OK

pep

for some integer exponents ep of which only finitely many are non-zero.

The non-zero fractional ideals I of K form a group under ideal
multiplication, called IK .

An ideal I is called principal if there exists α ∈ K such that I = (α). This
gives a subgroup PK of IK given by the principal ideals. Then we define
the class group of K as

Cl(K ) := IK/PK ,

which is a finite abelian group.
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The Cohen-Lenstra heuristics

Let p be an odd prime. When K varies among imaginary quadratic fields
ordered by their discriminant DK , the group Cl(K )[p∞] is believed to
behave as a random finite, abelian p-group.

More formally, Cohen and Lenstra conjectured that

lim
X→∞

|{K im. quadr. : |DK | < X and Cl(K )[p∞] ∼= A}|
|{K im. quadr. : |DK | < X}|

=

∏∞
i=1

(
1− 1

pi

)
|Aut(A)|

for every finite, abelian p-group A.

They also made a similar conjecture for real quadratic fields

lim
X→∞

|{K re. quadr. : |DK | < X and Cl(K )[p∞] ∼= A}|
|{K re. quadr. : |DK | < X}|

=

∏∞
i=2

(
1− 1

pi

)
|A||Aut(A)|

,

where one should now think of Cl(K )[p∞] as the quotient of a random
abelian group.
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Genus theory

Note that p = 2 is excluded from the Cohen and Lenstra conjectures.
The reason for this is that the group Cl(K )[2] has a very predictable
behavior unlike Cl(K )[p] for p odd.

The description of Cl(K )[2] is due to Gauss and is known as genus
theory. We have that

|Cl(K )[2]| = 2ω(DK )−1

and Cl(K )[2] is generated by the ramified prime ideals of OK .
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Gerth’s modification

Since the group Cl(K )[2] is no longer random, Gerth proposed the
following modification of the Cohen-Lenstra conjectures. Instead of
Cl(K )[2∞], it is the group (2Cl(K ))[2∞] that behaves randomly.

To be precise, Gerth conjectured the following

lim
X→∞

|{K im. quadr. : |DK | < X , (2Cl(K ))[2∞] ∼= A}|
|{K im. quadr. : |DK | < X}|

=

∏∞
i=1

(
1− 1

2i
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for every finite, abelian 2-group A, and similarly for real quadratics.
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Governing fields

For a finite abelian group A, we define rk2k (A) := dimF2 2k−1A/2kA.
Example

A = Z/3Z⊕ Z/2Z⊕ Z/2Z⊕ Z/8Z.

Then we have rk2(A) = 3, rk4(A) = rk8(A) = 1 and rk2k (A) = 0 for every
integer k ≥ 4.

Cohn and Lagarias conjectured that for each integer k ≥ 1 and each
integer d 6≡ 2 mod 4, there exists a normal field extension Md,k over Q
and a class function φd,k : Gal(Md,k/Q)→ Z≥0 such that

φd,k(FrobMd,k/Q(p)) = rk2k Cl(Q(
√
dp))

for all primes p coprime with 2d .
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The Cohn and Lagarias conjecture

Theorem 1 (Stevenhagen, 1989)

The Cohn and Lagarias conjecture is true for all values of d and all
values of 1 ≤ k ≤ 3.

No progress since then! It is still an open problem if Md,k exists for any
value of k with k > 3. However, we have the following.

Theorem 2 (K.-Milovic, 2018)

Assume a short character sum conjecture. Then M−4,4 does not exist.
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The breakthrough of Smith

Smith realized that it is no longer possible to govern a single 2k -rank by
a Chebotarev symbol, but instead that one can still compare class groups.

From this he was able to prove Gerth’s conjecture.

Theorem 3 (Smith, 2017)

We have for every finite, abelian 2-group A

lim
X→∞

|{K im. quadr. : |DK | < X , (2Cl(K ))[2∞] ∼= A}|
|{K im. quadr. : |DK | < X}|

=

∏∞
i=1

(
1− 1

2i

)
|Aut(A)|

.

Using the same techniques, Smith solved the congruent number problem.
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A reflection principle

So how does one compare class groups? Use “reflection principles”.

The following theorem due to Stevenhagen is a typical example of a
reflection principle, and is a special case of Smith’s reflection principle.

Theorem 4 (Stevenhagen, 1993)

Let p be a prime that splits completely in K := Q(ζ16,
4
√

2). This is
equivalent to 8 | h−4p, 8 | h−8p and 8 | h+8p. If p splits completely in

K (
√

1 + ζ8), we have

16 | h+8p ⇔ 16 | h−8p and 16 | h−4p,

while if p does not split completely in K (
√

1 + ζ8)

16 | h+8p ⇔ 16 | h−8p and 8 ‖ h−4p.
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Cyclic extensions

Let l be an odd prime. There is a natural analogue for degree l cyclic
extensions K of Q. Then Cl(K ) is a Z[Gal(K/Q)]-module.

Picking an identification of Gal(K/Q) with 〈ζl〉, we get a Z[ζl ]-module,
since the norm element in Z[Gal(K/Q)] acts as zero on Cl(K ).

The isomorphism type of the resulting Z[ζl ]-module does not depend on
the chosen identification.

Hence we may view Cl(K )[l∞] as a Zl [ζl ]-module, and one may think of
it as a random module in the appropriate sense.
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Another conjecture of Gerth

Gerth conjectured that ((1− ζl)Cl(K ))[l∞] is a random Zl [ζl ]-module.

Using the breakthrough of Smith, we proved this conjecture.

Theorem 5 (K.-Pagano, 2018)

Assume GRH and let l be an odd prime. Then for all finitely generated,
torsion Zl [ζl ]-modules A the limit

lim
X→∞

|{K cyc. deg. l : |DK | < X , ((1− ζl)Cl(K ))[l∞] ∼= A}|
|{K cyc. deg. l : |DK | < X}|

exists, and is equal to ∏∞
i=2

(
1− 1

l i

)
|A||AutZl [ζl ](A)|

.
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Questions

Questions?


