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A question about a,(E)

Question (Ramakrishna, 2003)

3

Let E be the elliptic curve E : y?> = x3 — x, and define

ap(E) = p+1— |E(F,)!
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A question about a,(E)

Question (Ramakrishna, 2003)

3 _ x, and define

Let E be the elliptic curve E : y?> = x
2p(E) = p+ 1 |E(F,)].

Are there infinitely many primes p = 1 mod 12 such that a,(E) is a cubic
residue modulo p?

If p =2 mod 3, then all elements of IF, are cubes, because
|F5| =p—170mod 3.

If p =3 mod 4 and p > 3, then E has supersingular reduction at p, so

which is a cube modulo p.
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Rephrasing the question

Theorem (Cox, Theorem 14.16)

Let K be an imaginary quadratic field and let O be an order in K. Let L
be the ring class field of O, and let E be an elliptic curve over L with
Endc(E) = O.
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Let K be an imaginary quadratic field and let O be an order in K. Let L
be the ring class field of O, and let E be an elliptic curve over L with
Endc(E) = O.

Let p be a prime that splits completely in L and p be a prime in K above
p- Suppose E has good reduction at p. Then there is k € O such that
p = Kk and

3p(E) = p+ 1~ |E(F,)] = ki +F.

In our situation, we have

E:y2:X37X7 K:Q(I)a O:Z[I]a L:@(’)
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Rephrasing the question

Theorem (Cox, Theorem 14.16)

Let K be an imaginary quadratic field and let O be an order in K. Let L
be the ring class field of O, and let E be an elliptic curve over L with
Endc(E) = O.

Let p be a prime that splits completely in L and p be a prime in K above
p- Suppose E has good reduction at p. Then there is k € O such that
= Kk and
3p(E) = p+ 1~ |E(F,)] = ki +F.

In our situation, we have
E:y’=x*—x, K=Q(i), 0=12[i], L=Q().

Since Z|[i] is a PID, we can write p = 77, and 7 is unique up to
multiplying by a power of i. Then, for some choice of 7, we have

ap(E)=m+T.
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A criterion for a,(E) being a cube modulo p

Since we have Z/pZ = Z[i]/wZ[i], we have that a,(E) =7+ T is a cube
modulo p if and only if it is a cube modulo .
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A criterion for a,(E) being a cube modulo p

Since we have Z/pZ = Z[i]/wZ[i], we have that a,(E) =7+ T is a cube
modulo p if and only if it is a cube modulo .

However, observe that a,(E) =7 mod 7. So the question is equivalent
to 7 being a cube modulo 7.

Lemma

If p=1mod 12, then 7 is a cube modulo 7 if and only if i - 7 is a cube
modulo .

Proof.

Since p = 1 mod 12, we know that there is a primitive 12-th root of unity
Ci2 inFp. Thus i = (4 is a cube in Fp,. ]

Corollary

Let p=1mod 12. Then a,(E) is a cube modulo p if and only if
(7/m)3 = 1, where 7 is any element of Z][i] satisfying =7 = p.
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Cubic residue symbols

Let K be a number field with (3 € K. For o € Ok and p 1 30k a prime,
we define (o/p)k 3 as the unique element in {1, (3, (3,0} with

« Nk/gp)—1
— =a 3 mod p.
P/ k3
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Cubic residue symbols

Let K be a number field with (3 € K. For o € Ok and p 1 30k a prime,
we define (o/p)k 3 as the unique element in {1, (3, (3,0} with

« Nk/gp)—1
— =a 3 mod p.
P/ k3

We multiplicatively extend this to all ideals coprime to 3.

This residue symbol has the same usual properties as the quadratic
residue symbol, i.e. periodicity and reciprocity.
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The symbol encoding a,(E)

Consider the field diagram

C/m
\\/

Q(¢12)

(oT)
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Consider the field diagram

C/m
\\/

For an ideal a of Z[(12], we define the symbol [q]
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0 otherwise,
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The symbol encoding a,(E)

Consider the field diagram

/(T)
\\/

For an ideal a of Z[(12], we define the symbol [q]

o(a)or(a) if gcd(a,(3)) =1
[a] :_{( a >@(<u),3 i ged(a, (3))

Q(¢12)

(oT)

0 otherwise,

where « is any generator of a. The symbol is well-defined, and satisfies

Z [o(p)] = —2 if ap(E) is not a cube modulo p
PPI= 4 if a,(E) is a cube modulo p
pEGal(Q(¢12)/Q) P

for p a split prime of degree 1 (i.e. p =pNZ satisfies p = 1 mod 12).

6/21



Our main results

Theorem (K.—Uttenthal)
There exists C > 0 such that for all X > 100

> bl o
Ne(erp)/a(P)<X
p prime
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Our main results

Theorem (K.—Uttenthal)
There exists C > 0 such that for all X > 100

> Dbl < cxE
Ne(erp)/a(P)<X
p prime

Corollary (K.—Uttenthal)
We have

#{p=1mod 12 : a,(E) is a cube modulo p} _1 0 log X
#{p =1 mod 12} 3 SCEEED i

In fact, one can prove a similar result for any imaginary quadratic field,
which has applications to a conjecture of Weston.
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Spin of prime ideals

Definition
Let K/Q be a totally real Galois field and assume that all totally positive
units (i.e. positive in every real embedding) are squares.
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Spin of prime ideals

Definition
Let K/Q be a totally real Galois field and assume that all totally positive
units (i.e. positive in every real embedding) are squares.

Given o € Gal(K/Q) and a principal prime p of K admitting a totally
positive generator, FIMR define

sin(a.p) = () .

where (-/-)k 2 is the quadratic residue symbol in K and where 7 is any
totally positive generator of p. This is well-defined, as changing the
generator m of p changes w by the square of a unit.
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The main result of FIMR

Theorem (FIMR)

Assume that K/Q is cyclic of degree n and that o is a generator of
Gal(K/Q). If n > 4, assume a short character sum conjecture. There
exists 0 > 0 such that for all X > 100

Z spin(a, p)| < X179.
Nk o(p)<X

Here the sum is over prime ideals p admitting a totally positive generator.
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The main result of FIMR

Theorem (FIMR)

Assume that K/Q is cyclic of degree n and that o is a generator of
Gal(K/Q). If n > 4, assume a short character sum conjecture. There
exists 0 > 0 such that for all X > 100

Z spin(a, p)| < X179.
Nk o(p)<X

Here the sum is over prime ideals p admitting a totally positive generator.

We adapt their arguments to cubic residue symbols and the field
K = Q((12), which is neither cyclic nor totally real, and has degree > 4.

Our main analytic achievement is in making their techniques
unconditional in this case.
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Applications of spins

Spins have found numerous applications since their inception. They
measure the splitting of 7 in K(y/o(7)). Applications include

» 2-Selmer ranks of elliptic curves in quadratic twist families indexed
by primes (FIMR),

> 16-rank of the class group of Q(v/—2p) and Q(v/—p) (Milovic,
K.-Milovic, K.),

» Ramakrishna's question, Weston's conjecture and Weston—Zaurova
conjecture (Weston—Zaurova),

> residue field degrees of primes p in the ray class field of K of
conductor p,

» lifting problems of Galois representations.
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Proving oscillation of spins: Vinogradov’s sieve

Vinogradov's sieve is the only sieve at the moment that is able to catch
primes. We will discuss it for simplicity over Z.
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Let y, be a sequence indexed by positive integers such that y, = a, for
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Proving oscillation of spins: Vinogradov’s sieve

Vinogradov's sieve is the only sieve at the moment that is able to catch
primes. We will discuss it for simplicity over Z.

Let a, be a sequence indexed by primes. We wish to estimate > _y a.
Theorem (Vinogradov's sieve)
Let y, be a sequence indexed by positive integers such that y, = a, for

all primes p. Assume that we have good estimates for

Z Yn (sums of type I, linear sums)
n<X
n=0 mod ¢q

uniformly in q, and

Z Z &nBmYnm (sums of type I, bilinear sums)

n<X m<Y
for all ap, Bm € C bounded by 1.

Then we get an estimate for 3 _ ap.
11/21



Extending the sequence

Note that the first goal of Vinogradov's sequence is to extend the original
sequence a, to a new sequence y, that matches a, on the primes.
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Extending the sequence

Note that the first goal of Vinogradov's sequence is to extend the original
sequence a, to a new sequence y, that matches a, on the primes.

There are natural candidates for this both in our problem, namely the
symbol [a], and also in FIMR, namely

spin(o,a) = <U(a)> s ,

a

where « is a totally positive generator of a.
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Sums of type Il

Let an, Bm € C be bounded by 1. The bilinear sums

Z Z Qn Brspin(o, nm)

N yq(n)<X Ny jo(m)<Y

are relatively easy.
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The twist factor t(n,m) can be computed explicitly and roughly looks
like the Legendre symbol

(Z) o= () m = (1),

Absorbing spin(o,n) and spin(o, m) in the coefficients o, and By, it
suffices to estimate
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Sums of type Il

Let an, Bm € C be bounded by 1. The bilinear sums
Z Z Qn Brspin(o, nm)
Nk /(n)<X Ni/g(m)<Y
are relatively easy.
Indeed, the key point is the “twisted multiplicativity” of spin
spin(o, nm) = spin(o, n)spin(o, m)t(n, m).

The twist factor t(n,m) can be computed explicitly and roughly looks
like the Legendre symbol

(Z) o= () m = (1),

Absorbing spin(o,n) and spin(o, m) in the coefficients o, and By, it
suffices to estimate

S T en(l),,
Ny sg(m) X n=(1) Ny jq(m)< Y, m=(p) K2

This can be handled using large sieve techniques.
13/21
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The essential difficulty lies in the estimation of sums of type |. These are

>, )

Nija(a)
a=(a),x tot. pos.

where we have taken g = 1 for simplicity.
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Sums of type |

The essential difficulty lies in the estimation of sums of type |. These are

>, )

Nija(a)
a=(a),x tot. pos.

where we have taken g = 1 for simplicity.

The insight of FIMR is to approach this as follows: we split
Ok =7Z M,

soa=a+ fwithaeZ, &M

Then we have o(a) = a+ o(8), hence

() () )= (G 59)
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Sums of type |, continued

Recall that Ok =Z &M, o = a+ § and

(@)m B <o(€’5f ﬁ)m'
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() (@& 8)

)

Therefore we need to estimate

a+p )
S ({0
Nk g(a+B)<X

We now fix 3, then a runs over a sum of typical length X", while the
conductor is Nk q(o(B) — B) typically of size X. So our sum is “short”.
Here is where the short character sum conjecture comes in.
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Sums of type |, continued

Recall that Ok =Z &M, o« = a+ 8 and

() (@& 8)

)

Therefore we need to estimate

a+p )
S ({0
Nk g(a+B)<X

We now fix 3, then a runs over a sum of typical length X", while the
conductor is Nk q(o(B) — B) typically of size X. So our sum is “short”.
Here is where the short character sum conjecture comes in.

Technical warning: to make this precise, note that every ideal a has
infinitely many generators. So to avoid our sums running over infinitely
many terms, we need to construct a fundamental domain and pick for
each ideal a the unique generator from the fundamental domain.
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Why does FIMR only allow cyclic Galois groups?

The character <%>K72 does not oscillate if o(8) — 5 is a square.
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The character (0(5)75)&2 does not oscillate if o(8) — 5 is a square.

In fact, because of the way the short character sum conjecture works, we
need to show that o(3) — /3 has not too large squarefull part if 5 € M.

This gets increasingly difficult as M has smaller rank compared to Ok. In
FIMR, the Z-rank of M is n — 1 exactly because Gal(K/Q) is cyclic of
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This difficulty was overcome by K.-Milovic, who also obtained the joint
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Why does FIMR only allow cyclic Galois groups?

atfB . . _a
The character (0(5)75)&2 does not oscillate if o(8) — 5 is a square.

In fact, because of the way the short character sum conjecture works, we
need to show that o(3) — /3 has not too large squarefull part if 5 € M.

This gets increasingly difficult as M has smaller rank compared to Ok. In
FIMR, the Z-rank of M is n — 1 exactly because Gal(K/Q) is cyclic of
degree n and o is a generator.

This difficulty was overcome by K.-Milovic, who also obtained the joint

distribution of spins

[ 1 spin(o.p),

c€S
for any subset S of Gal(K/Q) satisfying o0 € S= 071 ¢ S. This
assumption is important because

spin(o, p) = (iﬂ) A (U_l(ﬂ)>

™

are related by quadratic reciprocity. This was further studied by
McMeekin, and Chan—McMeekin—Milovic.
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Back to our situation

Recall the field diagram

Q(C12)

(r) Y>
) Q(i) Q
\ ! /

(o)

Q(G V3)
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Back to our situation

Recall the field diagram

Q(C12)

(o) ()

w)

) Q(i) Q(
Q

so our aim is to estimate the type | sums

3 (U(a)ZT(a) > =

OCEZ[CH]
No(cp)/a(e) <X

Q(G V3)
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Field lowering

It turns out that the symbol

(07(a)>
@ Q(¢12),3

is “almost” identically equal to 1, while the other symbol can be
“lowered” to Q((3).
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Field lowering

It turns out that the symbol

(JT(OZ))
@ Q(¢12),3

is “almost” identically equal to 1, while the other symbol can be
“lowered” to Q((3).

So the modulus of the character becomes X'/2 instead of X - X = X2,
while the sum over a € Z is still of length X1/4.

Thus we can apply Burgess inequality in this range to get our savings.

Let us now show how this “field lowering” mechanism happens.
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Field lowering in practice

We get from the FIMR method, writing o = a+ 8

(78) = (5)
@/ Q)3 or(B) -5 @(412)3'
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Field lowering in practice

We get from the FIMR method, writing o = a+ 8
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This implies that, if o7(8) — 8 is coprime to the ramified primes in
Z[(10], it is the extension of some ideal ¢ from Q(+/3).

Furthermore, a+ 3 is fixed by o7 modulo o7(3) — 3. Thus there is some
v € Z[v/3] such that

a+pf=~vymodor(B)— 8.

We rewrite

(570775 s~ (168 ) s~ ()
O—T(ﬂ)iﬂ Q(¢12),3 CZ[CH] Q(¢12),3 CZ[CH] Q(C12),3.
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The field lowering lemmas

Lemma (Field lowering for split primes)

Let K be a number field and let p be a prime of K coprime to 3. Assume
that L is a quadratic extension of K such that L contains (3 and p splits
in L. Write o for the non-trivial element of Gal(L/K). Then for o € Ok

2
( o > ) (ee),, FofiesG
L3 7

POL 1.0 if o does not fix (3.
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that L is a quadratic extension of K such that L contains (3 and p splits
in L. Write o for the non-trivial element of Gal(L/K). Then for o € Ok

2
(a> _ (ﬁ)K,3 if o fixes (3
L3

POL 1.0 if o does not fix (3.

Lemma (Field lowering for inert primes)

Let K be a number field and let p be a prime of K coprime to 3. Assume
that L is a quadratic extension of K such that L contains (3 and assume

that p stays inert in L. Further assume that p has degree 1 in K and let

p be the prime of Q lying below p. Then we have for all « € Ok

p+1
> N _
(POL)L,3 <P0K>K,3
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Questions?

Thank you for your attention!



