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The value set

Definition (Value set)

Let F ∈ Z[X ,Y ] be a binary form (i.e. homogeneous polynomial in two
variables). Define

Val(F ) := {F (x , y) : (x , y) ∈ Z2}.

For two forms F ,G ∈ Z[X ,Y ], we say F ∼val G if Val(F ) = Val(G ).

We
denote by [F ]val the resulting equivalence class of F .

Value sets of binary quadratic forms are classical topics of study.

Example (Fermat)

We have

Val(X 2 + Y 2) = {n ∈ Z>0 : p | n and p ≡ 3 mod 4 ⇒ vp(n) ≡ 0 mod 2}.

Class field theory gives an explicit description of Val(F ) for F binary
quadratic. However, much less is known if deg(F ) ≥ 3.
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Equivalence of forms

Recall that two binary forms F ,G ∈ Z[X ,Y ] are GL2(Z)–equivalent,

written F ∼GL2(Z) G , if there exists γ =

(
a b
c d

)
∈ GL2(Z) with

F (γ(X ,Y )) = F (aX + bY , cX + dY ) = G (X ,Y ).

Lemma

If F ∼GL2(Z) G, then F ∼val G. Hence

[F ]GL2(Z) ⊆ [F ]val. (1)

Proof.

This follows from the fact that all γ ∈ GL2(Z) permute Z2.

The main question of today is: when is the inclusion (1) strict?
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An example

Example

Take F (X ,Y ) = X 3 − 3XY 2 − Y 3 and R :=

(
0 1
−1 −1

)
. One checks

▶ we have F ◦ R = F ,

▶ we have R3 = id.

Let G (X ,Y ) := F (2X ,Y ).

Lemma

We have Val(F ) = Val(G ), but F ̸∼GL2(Z) G by looking at discriminants.
In particular, [F ]GL2(Z) ⊊ [F ]val.

4 / 13



An example

Example

Take F (X ,Y ) = X 3 − 3XY 2 − Y 3 and R :=

(
0 1
−1 −1

)
. One checks

▶ we have F ◦ R = F ,

▶ we have R3 = id.

Let G (X ,Y ) := F (2X ,Y ).

Lemma

We have Val(F ) = Val(G ), but F ̸∼GL2(Z) G by looking at discriminants.
In particular, [F ]GL2(Z) ⊊ [F ]val.

4 / 13



An example

Example

Take F (X ,Y ) = X 3 − 3XY 2 − Y 3 and R :=

(
0 1
−1 −1

)
. One checks

▶ we have F ◦ R = F ,

▶ we have R3 = id.

Let G (X ,Y ) := F (2X ,Y ).

Lemma

We have Val(F ) = Val(G ), but F ̸∼GL2(Z) G by looking at discriminants.
In particular, [F ]GL2(Z) ⊊ [F ]val.

4 / 13



An example

Example

Take F (X ,Y ) = X 3 − 3XY 2 − Y 3 and R :=

(
0 1
−1 −1

)
. One checks

▶ we have F ◦ R = F ,

▶ we have R3 = id.

Let G (X ,Y ) := F (2X ,Y ).

Lemma

We have Val(F ) = Val(G ), but F ̸∼GL2(Z) G by looking at discriminants.
In particular, [F ]GL2(Z) ⊊ [F ]val.

4 / 13



An example

Example

Take F (X ,Y ) = X 3 − 3XY 2 − Y 3 and R :=

(
0 1
−1 −1

)
. One checks

▶ we have F ◦ R = F ,

▶ we have R3 = id.

Let G (X ,Y ) := F (2X ,Y ).

Lemma

We have Val(F ) = Val(G ), but F ̸∼GL2(Z) G by looking at discriminants.
In particular, [F ]GL2(Z) ⊊ [F ]val.

4 / 13



Proof of lemma

Recall F (X ,Y ) = X 3 − 3XY 2 − Y 3, R :=

(
0 1
−1 −1

)
, F ◦ R = F and

G (X ,Y ) := F (2X ,Y ). We must prove Val(F ) = Val(G ).

Proof.

Clearly, Val(G ) ⊆ Val(F ), so suffices to show Val(F ) ⊆ Val(G ).

Take
z ∈ Val(F ), so z = F (x , y) for some x , y ∈ Z. Exploiting
F = F ◦ R = F ◦ R2, we get

z = F (x , y) = F (y ,−x − y) = F (−x − y , x).

Now at least one of x , y ,−x − y is even, say x = 2m. Then

z = F (x , y) = F (2m, y) = G (m, y),

so z ∈ Val(G ), as desired.
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Our main result

Theorem (K.–Fouvry)

Let F ∈ Z[X ,Y ] be a binary form of degree d ≥ 3, and assume
disc(F ) ̸= 0. Then [F ]val consists of one or two GL2(Z)–equivalence
classes.

It consists of two classes if and only if there exists G ∈ [F ]val and
σ ∈ Aut(G ) := {γ ∈ GL2(Q) : G ◦ γ = G} satisfying:

▶ σ has order exactly 3,

▶ σ ∈ GL2(Z).
Furthermore, in this case

[F ]val = [G (X ,Y )]GL2(Z) ∪ [G (2X ,Y )]GL2(Z).

Remark.
▶ We prove a similar result if d = 2.
▶ The possibilities for Aut(G ) have been classified (as an abstract

group). In particular, |Aut(G )| ≤ 12.
▶ Generically, we have Aut(F ) = {id} for d odd, Aut(F ) = {id,−id}

for d even. In particular, we generically have [F ]GL2(Z) = [F ]val.
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High level proof strategy

Consider the surface S ⊆ P3 defined by

F (X ,Y ) = G (Z ,W ).

The key proof idea is that Val(F ) = Val(G ) gives an abundance of
rational points on S .

However, the determinant method (developed by Heath-Brown and
Salberger) shows that the rational points can only come in a rather
structured way, namely from the lines on the surface.

The lines on the surface have been classified, which will then turn our
problem into a question of lattice coverings.

7 / 13



High level proof strategy

Consider the surface S ⊆ P3 defined by

F (X ,Y ) = G (Z ,W ).

The key proof idea is that Val(F ) = Val(G ) gives an abundance of
rational points on S .

However, the determinant method (developed by Heath-Brown and
Salberger) shows that the rational points can only come in a rather
structured way, namely from the lines on the surface.

The lines on the surface have been classified, which will then turn our
problem into a question of lattice coverings.

7 / 13



High level proof strategy

Consider the surface S ⊆ P3 defined by

F (X ,Y ) = G (Z ,W ).

The key proof idea is that Val(F ) = Val(G ) gives an abundance of
rational points on S .

However, the determinant method (developed by Heath-Brown and
Salberger) shows that the rational points can only come in a rather
structured way, namely from the lines on the surface.

The lines on the surface have been classified, which will then turn our
problem into a question of lattice coverings.

7 / 13



High level proof strategy

Consider the surface S ⊆ P3 defined by

F (X ,Y ) = G (Z ,W ).

The key proof idea is that Val(F ) = Val(G ) gives an abundance of
rational points on S .

However, the determinant method (developed by Heath-Brown and
Salberger) shows that the rational points can only come in a rather
structured way, namely from the lines on the surface.

The lines on the surface have been classified, which will then turn our
problem into a question of lattice coverings.

7 / 13



Lattice coverings

Theorem (K.–Fouvry, “The lattice theorem”)

Let F ,G with Val(F ) = Val(G ), and let ρ ∈ GL2(Q) satisfy F = G ◦ ρ.

Then

Z2 =
⋃

σ1∈Aut(F )

{(
x
y

)
∈ Z2 : ρσ1

(
x
y

)
∈ Z2

}
and

Z2 =
⋃

σ2∈Aut(G)

{(
x
y

)
∈ Z2 : σ2ρ

−1

(
x
y

)
∈ Z2

}
.

Remark. The first and second equality mean that Z2 is the union of
sublattices of Z2 indexed by Aut(F ) respectively Aut(G ).
Remark. Such a ρ must exist, since Val(F ) = Val(G ) implies that S
has many rational points, so by Step 1, 2, 3, there must be such a ρ.
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The main result for trivial automorphism group

The “lattice theorem” is extremely useful. For example, if Aut(F ) = id,
we get

Z2 =

{(
x
y

)
∈ Z2 : ρ

(
x
y

)
∈ Z2

}

and

Z2 =

{(
x
y

)
∈ Z2 : ρ−1

(
x
y

)
∈ Z2

}
.

This implies that ρ(Z2) ⊆ Z2 and ρ−1(Z2) ⊆ Z2. So ρ and ρ−1 have
integer coefficients.

This means precisely that ρ ∈ GL2(Z), so F and G are
GL2(Z)–equivalent.
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The main result for automorphism group C2

This argument also works if

Aut(F ) =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
=:

{(
1 0
0 1

)
, σ

}
,

i.e. F (X ,Y ) = F (Y ,X ).

In this case

Z2 =

{(
x
y

)
∈ Z2 : ρ

(
x
y

)
∈ Z2

}
∪
{(

x
y

)
∈ Z2 : ρσ

(
x
y

)
∈ Z2

}
and

Z2 =

{(
x
y

)
∈ Z2 : ρ−1

(
x
y

)
∈ Z2

}
∪
{(

x
y

)
∈ Z2 : σρ−1

(
x
y

)
∈ Z2

}
.

However, if lattices L1, L2 ⊆ Z2 satisfy L1 ∪ L2 = Z2, then L1 = Z2 or
L2 = Z2. This still implies that F ,G are GL2(Z)–equivalent.
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The general case

In general, we are led to the question: let L1, . . . , L6 ⊆ Z2 be lattices.
Suppose that Z2 = L1 ∪ · · · ∪ L6. What can L1, . . . , L6 be?

Remark. The number 6 comes from the largest possible automorphism
group, which is D6.

Theorem (K.–Fouvry, “Lattice covering classification”)

▶ There is exactly 1 (i.e. up to permutation and inclusion) covering
with 3 lattices.

▶ There are exactly 4 coverings with 4 lattices.

▶ There are exactly 9 coverings with 5 lattices.

▶ There are exactly 40 coverings with 6 lattices.
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The cover with 3 lattices

The unique cover with 3 lattices is

Z2 =

{(
x
y

)
∈ Z2 : x ≡ 0 mod 2

}
∪
{(

x
y

)
∈ Z2 : y ≡ 0 mod 2

}
∪
{(

x
y

)
∈ Z2 : x + y ≡ 0 mod 2

}
.

This covering can actually arise from binary forms!

Indeed, these are exactly the cases where [F ]val consists of two classes: in
particular, this is the covering one would get from our first example.

The other cases do not arise.
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Ruling out all other coverings

Ruling out the remaining coverings is the hardest part of our papers,
although completely elementary. We use:

▶ Many case distinctions...

▶ Some Gröbner basis computations...

▶ Many brute force searches with the computer...
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