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The value set

Definition (Value set)

Let F € Z[X, Y] be a binary form (i.e. homogeneous polynomial in two
variables). Define

Val(F) := {F(x,y) : (x,y) € Z?}.

For two forms F, G € Z[X, Y], we say F ~ya G if Val(F) = Val(G).
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The value set

Definition (Value set)

Let F € Z[X, Y] be a binary form (i.e. homogeneous polynomial in two
variables). Define

Val(F) := {F(x,y) : (x,y) € Z?}.

For two forms F, G € Z[X, Y], we say F ~, G if Val(F) = Val(G). We
denote by [Flval the resulting equivalence class of F.

Value sets of binary quadratic forms are classical topics of study.

Example (Fermat)

We have
Val(X?+ Y?)={n€Z<o:p|nand p=3mod4=v,(n) =0 mod 2}.
Class field theory gives an explicit description of Val(F) for F binary

quadratic. However, much less is known if deg(F) > 3.
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Equivalence of forms

Recall that two binary forms F, G € Z[X, Y] are GLy(Z)—equivalent,

b) € GLo(Z) with

written F ~¢,(z) G, if there exists v = d

F(v(X,Y)) = F(aX + bY,cX + dY) = G(X, Y).
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Equivalence of forms

Recall that two binary forms F, G € Z[X, Y] are GLy(Z)—equivalent,

written F ~gp,(z) G, if there exists y = i Z € GLy(Z) with

F(v(X,Y)) = F(aX + bY,cX + dY) = G(X, Y).

Lemma
If F ~6L,zy G, then F ~,5 G. Hence
[Flota(zy € [Flval- (1)
Proof.
This follows from the fact that all v € GLy(Z) permute Z2. O

The main question of today is: when is the inclusion (1) strict?
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An example

Example

0 1

Take F(X,Y)=X3—-3XY2-Y3and R := <_1 1

> . One checks
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An example

Example

0 1

Take F(X,Y)=X3—-3XY2-Y3and R := <_1 1

> . One checks

» we have Fo R = F,
> we have R3 = id.
Let G(X,Y) := F(2X,Y).

Lemma

We have Val(F) = Val(G), but F o,z G by looking at discriminants.
In particular, [Fler,zy & [Flvar-
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Proof of lemma

Recall F(X,Y)=X3-3XY2-Y3 R:= (_01 _11) FoR=F and

G(X,Y):= F(2X,Y). We must prove Val(F) = Val(G).

Proof.
Clearly, Val(G) C Val(F), so suffices to show Val(F) C Val(G).
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Proof of lemma

Recall F(X,Y)=X3-3XY2-Y3 R:= _01 _11) FoR=F and
G(X,Y):= F(2X,Y). We must prove Val(F) = Val(G).

Proof.

Clearly, Val(G) C Val(F), so suffices to show Val(F) C Val(G). Take
z € Val(F), so z = F(x,y) for some x,y € Z. Exploiting
F=FoR=FoR? we get

z=F(x,y)=F(y,—x—y) = F(—x — y, x).
Now at least one of x,y, —x — y is even, say x =2m. Then
z=F(x,y) = F(2m,y) = G(m,y),

so z € Val(G), as desired. O
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Our main result

Theorem (K.—Fouvry)

Let F € Z[X, Y] be a binary form of degree d > 3, and assume
disc(F) # 0. Then [F]val consists of one or two GLy(Z)-equivalence
classes.
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Let F € Z[X, Y] be a binary form of degree d > 3, and assume
disc(F) # 0. Then [F]val consists of one or two GLy(Z)-equivalence
classes. It consists of two classes if and only if there exists G € [F],a and
o € Aut(G) := {vy € GLy(Q) : G oy = G} satisfying:

» o has order exactly 3,

» o c GLQ(Z).

Furthermore, in this case

[Flval = [G(X, Vl6w(z) UG (2X, Y)l6L,(z)-

Remark.
» We prove a similar result if d = 2.
» The possibilities for Aut(G) have been classified (as an abstract
group). In particular, |Aut(G)| < 12.
» Generically, we have Aut(F) = {id} for d odd, Aut(F) = {id, —id}
for d even. In particular, we generically have [Flc,(z) = [Flval-
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High level proof strategy

Consider the surface S C P3 defined by

F(X,Y)=G(Z,W).
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High level proof strategy

Consider the surface S C P3 defined by
F(X,Y)=G(Z,W).

The key proof idea is that Val(F) = Val(G) gives an abundance of
rational points on S.

However, the determinant method (developed by Heath-Brown and
Salberger) shows that the rational points can only come in a rather
structured way, namely from the lines on the surface.

The lines on the surface have been classified, which will then turn our
problem into a question of lattice coverings.
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Lattice coverings

Theorem (K.—Fouvry, “The lattice theorem”)

Let F, G with Val(F) = Val(G), and let p € GLy(Q) satisfy F = G o p.

Then
72 = X) €72 <X> ez2}
U(F) { (y 2G0T y

o1EAuUt

72 = U {<X> €7?: azp_l (X) S Zz} .
o2€AuUt(G) y y

Remark. The first and second equality mean that Z? is the union of
sublattices of Z? indexed by Aut(F) respectively Aut(G).

Remark. Such a p must exist, since Val(F) = Val(G) implies that S
has many rational points, so by Step 1, 2, 3, there must be such a p.

and

8/13



The main result for trivial automorphism group

The “lattice theorem" is extremely useful. For example, if Aut(F) = id,

we get
Zz_{<x> 622:0()() EZQ}
y y
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The main result for trivial automorphism group

The “lattice theorem" is extremely useful. For example, if Aut(F) = id,

(e
() () ex)

This implies that p(Z?) C Z? and p=1(Z?) C Z?. So p and p~! have
integer coefficients.

and

This means precisely that p € GLy(Z), so F and G are
GLy(Z)—equivalent.
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The main result for automorphism group G,

This argument also works if

e ={(3 9.4 9)-{ 9}
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The main result for automorphism group G,

This argument also works if

e ={(3 9.4 9)-{ 9}

i.e. F(X,Y)=F(Y,X). In this case

2= {() o) e} i) o)
2 {() o () =o{() oo ()2

However, if lattices Ly, Ly C Z? satisfy Ly U L, = Z?, then Ly = Z? or
L, = Z2. This still implies that F, G are GL,(Z)-equivalent.
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The general case

In general, we are led to the question: let Ly, ..., Ls C Z? be lattices.
Suppose that Z? = L; U---U Lg. What can Li,...,Ls be?

Remark. The number 6 comes from the largest possible automorphism
group, which is Dg.
Theorem (K.—Fouvry, “Lattice covering classification”)

» There is exactly 1 (i.e. up to permutation and inclusion) covering
with 3 lattices.

» There are exactly 4 coverings with 4 lattices.

v

There are exactly 9 coverings with 5 lattices.

» There are exactly 40 coverings with 6 lattices.
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The cover with 3 lattices

The unique cover with 3 lattices is

Zzz{(x>eZZ:xzomodz}u{(X>ez2:yzomod2}
y y
U{(;>€Z2:X+y—0mod2}.
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The cover with 3 lattices

The unique cover with 3 lattices is

Zzz{(’;> EZZ:XEOmod2}U{(;)€Z2:y50mod2}
U{(;>€Z2:X+y—0mod2}.

This covering can actually arise from binary forms!

Indeed, these are exactly the cases where [F],a consists of two classes: in
particular, this is the covering one would get from our first example.

The other cases do not arise.
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Ruling out all other coverings

Ruling out the remaining coverings is the hardest part of our papers,
although completely elementary. We use:
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Ruling out all other coverings

Ruling out the remaining coverings is the hardest part of our papers,
although completely elementary. We use:

» Many case distinctions...
» Some Grobner basis computations...

» Many brute force searches with the computer...
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