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(1) Let µ and ⌫ be two measures on the measure space (E,B) such that µ(A)  ⌫(A) for all A 2 B.
(a) Show that if f is any non-negative measurable function on (E,B), then

R
E

f dµ 
R
E

f d⌫.

(b) Prove that if ⌫ is a finite measure, then L2(⌫) ✓ L1(µ).

Proof (a) Suppose first that f = 1
A

is the indicator function of some set A 2 B. Then
Z

E

f dµ = µ(A)  ⌫(A) =

Z

E

f d⌫.

Suppose now that f =
nX

k=1

↵

k

1
Ak is a non-negative measurable step function. Then,

Z

E

f dµ =
nX

k=1

↵

k

µ(A
k

) 
nX

k=1

↵

k

⌫(A
k

) =

Z

E

f d⌫.

Finally, let f be a non-negative measurable function, then there exists a sequence of non-negative
measurable step functions f

n

such that f
n

" f. By Beppo-Levi,
Z

E

f dµ = lim
n!1

Z

E

f

n

dµ  lim
n!1

Z

E

f

n

d⌫ =

Z

E

f d⌫.

Proof (b) From part (a) we see that if f 2 L1(⌫), then f 2 L1(µ), i.e. L1(⌫) ✓ L1(µ). If ⌫ is a
finite measure, then by Exercise 12.1 (ii) and the above, we have L2(⌫) ✓ L1(⌫) ✓ L

1(µ).

(2) Consider the measure space ((0, 1],B((0, 1]),�), where B((0, 1]) and � are the restrictions of the
Borel �-algebra and Lebesgue measure to the interval (0, 1]. Determine the value of

lim
n!1

Z

(0,1]
e

1/x(1 + n

2
x)�1 sin(ne�1/x

d�(x).

Proof: Let u
n

(x) = e

1/x(1 + n

2
x)�1 sin(ne�1/x, then lim

n!1 u

n

(x) = 0 for all x 2 (0, 1]. Since
| sin y|  y for all y � 0, we have

|u
n

(x)|  e

1/x(1 + n

2
x)�1

ne

�1/x =
n

1 + n

2
x

=
1p
x

· n

p
x

1 + n

2
x

 1p
x

.

Since the function
1p
x

is positive, measurable and the improper Riemann integrable on (0, 1]

exists, it follows that it is Lebesgue integrable on (0, 1]. By Lebesgue Dominated Convergence
Theorem, we have

lim
n!1

Z

(0,1]
e

1/x(1 + n

2
x)�1 sin(ne�1/x

d�(x) = lim
n!1

Z
u

n

(x) d�(x)

=

Z
lim
n!1

u

n

(x) d�(x) = 0.

(3) Let (X,F , µ) be a finite measure space. Assume f 2 L2(µ) satisfies 0 < ||f ||2 < 1, and let
A = {x 2 X : f(x) 6= 0}. Show that

µ(A) �
(
R
f dµ)2R
f

2
dµ

.

Solution: Since f = 0 on A

c, we have
R
f dµ =

R
f1

A

dµ. Since µ is a finite measure and
(1

A

)2 = 1

A

, then

||1
A

||2 = (µ(A))1/2 < 1.
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Thus, 1
A

2 L2(µ) and by Hölder’s inequality
Z

f dµ  ||f ||2||1A

||2 = |f ||2(µ(A))1/2.

Squaring both sides and dividing by

||f ||22 =

Z
f

2
dµ (> 0),

we get

µ(A) �
(
R
f dµ)2R
f

2
dµ

.

bigskip
(4) Let 1  p < 1, and suppose (X,A, µ) is a finite measure space. Let (f

n

)
n

2 Lp(µ) be a sequence
converging to f in µ measure.
(a) Show that Z

|f |p dµ  lim inf
n!1

Z
|f

n

|p dµ.

(b) Show that lim
n!1

n

p

µ({|f | > n}) = 0.

Solution (a): By definition of the liminf, we can find a subsequence (f
n(j))j such that

lim
j!1

Z
|f

n(j)|p dµ = lim inf
n!1

Z
|f

n

|p dµ.

By Exercise 16.10(iii), the sequence (|f
n

|p) converges in µ measure to |f |p. By Exercise 16.10(ii)
applied to the sequence (|f

n

|p) and the fact that µ(X) < 1, there exists a subsequence (f
m(j))

of (f
n(j))j such that

(i) (|f
m(j)|p) converges µ a.e. to |f |p, and

(ii) lim
j!1

Z
|f

m(j)|p dµ = lim inf
n!1

Z
|f

n

|p dµ.
By Fatou’s Lemma

Z
|f |p dµ =

Z
lim inf
j!1

|f
m(j)|p dµ  lim inf

j!1

Z
|f

m(j)|p dµ = lim
j!1

Z
|f

m(j)|p dµ = lim inf
n!1

Z
|f

n

|p dµ.

Solution (b): Note that f 2 Lp(µ) and hence by Corollary 10.13,

µ({|f |p = 1}) = µ({|f | = 1}) = 0.

Thus,

lim
n!1

|f |p1{|f |>n} = |f |p1{|f |=1} = 0 µ a.e.

Since for each n, |f |p1{|f |>n}  |f |p and |f |p 2 L1(µ), we have by Lebesgue Dominated Conver-
gence Theorem,

lim
n!1

Z
|f |p1{|f |>n} dµ = 0.

Now,

n

p

µ({|f | > n}) =
Z

n

p

1{|f |>n} dµ 
Z

|f |p1{|f |>n} dµ,

and from the above we get lim
n!1

n

p

µ({|f | > n}) = 0.

(5) Let E = {(x, y) : y < x < 1, , 0 < y < 1}. We consider on E the restriction of the product Borel
�-algebra, and the restriction of the product Lebesgue measure � ⇥ �. Let f : E ! R be given
by f(x, y) = x

�3/2 cos(⇡y2x ).
(a) Show that f is �⇥ � integrable on E.

(b) Define F : (0, 1) ! R by F (y) =
R
(y,1) x

�3/2 cos(⇡y2x ) d�(x). Determine the value of
Z

F (y) d�(y).
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Solution (a) : Notice that f is continuous, and hence measurable. Furthermore, |f(x, y)| 
x

�3/2. The function g(x, y) = x

�3/2 is non-negative and measurable on E, hence by Tonelli’s
Theorem,

Z

E

|f(x, y)| d(�⇥ �)(x, y) 
Z

E

g(x, y) d(�⇥ �)(x, y)

=

Z 1

0

Z
x

0
x

�3/2
dy dx

=

Z 1

0
x

�1/2
dx = 2.

Notice that the integrands are Riemann integrable, hence the Riemann integral equals the
Lebesgue integral. This shows that f is �⇥ � integrable on E.

Solution (b) : By Fubini’s Theorem
Z Z

f(x, y) d�(x) d�(y) =

Z Z
f(x, y) d�(y) d�(x).

Notice that for each fixed 0 < x < 1, the function f(x, y) is Riemann-integrable in y on the
interval (0, x) and Z

x

0
x

�3/2 cos(
⇡y

2x
) dy =

2

⇡

x

�1/2
,

and the function 2
⇡

x

�1/2 is Riemann-integrable in x on the interval (0, 1), and
Z 1

0

2

⇡

x

�1/2
dx =

4

⇡

.

Thus,
Z

F (y) d�(y) =

Z Z
f(x, y) d�(x) d�(y) =

Z 1

0

Z
x

0
x

�3/2 cos(
⇡y

2x
) dy dx =

4

⇡

.

(6) Let (X,A, µ) be a probability space (i.e. µ(X) = 1) and let {f
n

} be a sequence in L1(µ) such
that

R
X

|f
n

|dµ = n for all n � 1. Let

A

n

= {x : |f
n

(x)�
Z

X

f

n

dµ| � n

3}.

(a) Show that µ
⇣T

m�1

S
n�m

A

n

⌘
= 0.

(b) Use part (a) to show that for every ✏ > 0 there exists m0 � 1 such that

µ{x 2 X : |f
n

(x)| < n

3 + n, for all n � m0} > 1� ✏.

Proof (a) By Markov Inequality we have

µ(A
n

)  1

n

3

Z

X

|f
n

(x)�
Z

X

f

n

dµ| dµ  2n

n

3
=

2

n

2
.

Since
1X

n=1

µ(A
n

) =
1X

n=1

2

n

2
< 1, it follows by Borel-Cantelli Lemma (Exercise 6.9) that

µ

0

@
\

m�1

[

n�m

A

n

1

A = 0.

Proof (b) By part (a) we have µ

⇣S
m�1

T
n�m

A

c

n

⌘
= 1. By Theorem 4.4(iii),

lim
m!1

µ

0

@
\

n�m

A

c

n

1

A = µ

0

@
[

m�1

\

n�m

A

c

n

1

A = 1.
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Hence, given ✏ > 0 there exists m0 � 1 such that µ
⇣T

n�m0
A

c

n

⌘
> 1� ✏. But for x 2

T
n�m0

A

c

n

one has for n � m0,

|f
n

(x)|� |
Z

f

n

dµ|  |f
n

(x)�
Z

f

n

(x) dµ| < n

3
,

and thus, |f
n

(x)| < n

3 + n. This implies that

µ{x 2 X : |f
n

(x)| < n

3 + n, for all n � m0} � µ

0

@
\

n�m0

A

c

n

1

A
> 1� ✏.

(7) Suppose µ and ⌫ are finite measures on the measurable space (X,A) which have the same null
sets. Show that there exists a measurable function f such that 0 < f < 1 µ a.e. and ⌫ a.e. and
for all A 2 A one has

⌫(A) =

Z

A

f dµ and µ(A) =

Z

A

1

f

d⌫.

Proof The fact that µ and ⌫ have the same null sets implies that ⌫ ⌧ µ and µ ⌧ ⌫ (in fact
in this case we refer to µ and ⌫ as equivalent measure). So the notions µ a.e. and ⌫ a.e. are
the same. By Radon-Nikodym Theorem there exist f 2 L1

+(µ) and g 2 L1
+(⌫) such that for all

A 2 A,

⌫(A) =

Z

A

f dµ and µ(A) =

Z

A

g d⌫.

Furthermore, the functions f and g are unique µ and ⌫ a.e. By Exercise 1 of the last set of
exercises exercisesRadonNikodym.pdf, we have for any A 2 A,

⌫(A) =

Z

A

1 d⌫ =

Z

A

f dµ =

Z

A

fg d⌫.

By Corollary 10.14(i) this implies that 1 = fg ⌫ and hence µ a.e. From this and Corollary 10.13
we conclude that 0 < f < 1 and g = 1/f µ and ⌫ a.e.

(8) Let (X,A, µ) be a finite measure space and f

n

, f 2 M(A), n � 1. Show that f
n

converges to f

in µ measure if and only if lim
n!1

Z |f
n

� f |
1 + |f

n

� f | dµ = 0.

Solution: First note that
|f

n

� f |
1 + |f

n

� f |  1 for all n � 1, and since µ(X) < 1 we have 1 2 L1(µ).

Now assume that f
n

µ�! f , and let ✏, � > 0 , then there exists N such that

µ({x 2 X : |f
n

(x)� f(x)| > �}) < ✏, for all n � N.

Let A = {x 2 X : |f
n

(x)� f(x)| > �}, then for all n � N

Z |f
n

� f |
1 + |f

n

� f | dµ =

Z

A

|f
n

� f |
1 + |f

n

� f | dµ+

Z

A

c

|f
n

� f |
1 + |f

n

� f | dµ 
Z

A

1 dµ+

Z

A

c

� dµ.

Thus, for all n � N Z |f
n

� f |
1 + |f

n

� f | dµ  ✏+ �µ(X).

Thus, lim
n!1

Z |f
n

� f |
1 + |f

n

� f | dµ = 0.

Conversely, assume lim
n!1

Z |f
n

� f |
1 + |f

n

� f | dµ = 0, and let ✏ > 0. There exists N such that

Z |f
n

� f |
1 + |f

n

� f | dµ < ✏

2
/(1 + ✏), for all n � N.

Observe first that

|f
n

� f | > ✏ () |f
n

� f |
1 + |f

n

� f | >
✏

1 + ✏

.
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Thus, by Markov Inequality, we have for all n � N

µ({x 2 X : |f
n

(x)� f(x)| > ✏}) = µ({x 2 X :
|f

n

� f |
1 + |f

n

� f | >
✏

1 + ✏

})  1 + ✏

✏

Z |f
n

� f |
1 + |f

n

� f | dµ < ✏.

Thus, f
n

µ�! f .


