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Practice Final Measure and Integration 2014-15

Let p and v be two measures on the measure space (E, B) such that u(A) < v(A) for all A € B.
(a) Show that if f is any non-negative measurable function on (E, B), then [, fdu < [, fdv.
(b) Prove that if v is a finite measure, then £2(v) C £ (u).

Proof (a) Suppose first that f = 14 is the indicator function of some set A € B. Then

[ au=pa) <viay= [ pa

n
Suppose now that f = Z arla, is a non-negative measurable step function. Then,
k=1

Fp =" apu(Ar) <3 awv(Ar) = | fdv.

Finally, let f be a non-negative measurable function, then there exists a sequence of non-negative
measurable step functions f,, such that f,, 1 f. By Beppo-Levi,

/fdu: lim/fndug lim fndI/:/ fdv.

Proof (b) From part (a) we see that if f € £1(v), then f € L} (p), i.e. L1 (v) C LY (). Ifvisa
finite measure, then by Exercise 12.1 (ii) and the above, we have £2(v) C L*(v) C L' (u).

Consider the measure space ((0, 1], B((0,1]), A), where B((0,1]) and A are the restrictions of the
Borel o-algebra and Lebesgue measure to the interval (0, 1]. Determine the value of

lim eY/*(1 4 nz) " sin(ne™/* d(z).

Proof: Let u,(x) = e'/*(1 + nz) ' sin(ne=/*, then lim, o u,(x) = 0 for all z € (0,1]. Since
|siny| <y for all y > 0, we have

. < el/z(q 2 " pe~l/z — " =— —— < —.
[un(@)] < € 7(1 4 n"2)™"ne 1+n2z x l1+n?z~ JVz

1
Since the function —= is positive, measurable and the improper Riemann integrable on (0, 1]
x

exists, it follows that it is Lebesgue integrable on (0,1]. By Lebesgue Dominated Convergence
Theorem, we have

n—oo n—oo

lim / eT(1+n2z) Lsin(ne /T dA\(xz) = lim /un(x) d\(z)
(0,1]
= /nIEI;O up(z) dA(z) = 0.

Let (X,F,p) be a finite measure space. Assume f € L£2(u) satisfies 0 < ||f|]2 < oo, and let
A={x e X : f(x) #0}. Show that

(f fdw?
n(A) = W

Solution: Since f = 0 on A°, we have [ fdu = [ fladp. Since g is a finite measure and
(1A)2 =14, then
12all2 = (1(A))!? < 0.
1



Thus, 14 € £%(u) and by Holder’s inequality

/fdu < 1fll2lLallz = [Fll2(u(A)) 2,

Squaring both sides and dividing by

W7IE = [ £2du(> o),

we get
(J fdu)®
n(A) = ff
[ f2du
bigskip
(4) Let 1 < p < oo, and suppose (X, A, i) is a finite measure space. Let (f,)n € LP(u) be a sequence

converging to f in p measure.
(a) Show that

/\f|pdu < lilginf/ | fnlP dp.
(b) Show that nlgrgo nPu({|f| > n}) = 0.

Solution (a): By definition of the liminf, we can find a subsequence (f,,(;)); such that

lim /\fn(j)l” du:hminf/|fn|p du.
J—0o0 n—00
By Exercise 16.10(iii), the sequence (|f,|?) converges in pu measure to |f|P. By Exercise 16.10(ii)
applied to the sequence (| fn[") and the fact that u(X) < oo, there exists a subsequence (fi(;))
of (fn(;))j such that
(i) (|fm(j)|p) converges 4 a.e. to |f|P, and
1 3 | 1 . p
(i) jlln@.lo/ [ foni | i hnrg{gf/ [ ful? dp.

By Fatou’s Lemma

/ |fIP du = /lim inf | fo ([P dp < lim inf/ | fn(j) [P dpp = lim / | fn(jy [P dpr = lim inf/ | fnl? dp.
j—o0 j—o0 j—oo n—00

Solution (b): Note that f € £P(u) and hence by Corollary 10.13,

p({[fP = oo}) = u({lf] = o0}) = 0.
Thus,
Hm [fP1gf15n) = [fIP1{jfj=00} = 0 p ace.

n— oo

Since for each n, |f|P1{f>n} < |f|P and |f|P € L' (), we have by Lebesgue Dominated Conver-
gence Theorem,

lim /‘f|p1{‘f|>n}du:0.

n—oo

Now,
wu({lf] > n}) = / WPy oy it < / Py it

and from the above we get lim nPu({|f| > n}) =0.
n— o0

(5) Let E={(z,y):y<a<1,,0<y<1}. We consider on E the restriction of the product Borel
o-algebra, and the restriction of the product Lebesgue measure A x A. Let f : E — R be given
by f(z.y) = a2 cos(32).

(a) Show that f is A X X integrable on E.
(b) Define F: (0,1) = R by F(y) = [, 2732 cos(5Y) dA(z). Determine the value of

/ F(y) dA(y).



3
Solution (a) : Notice that f is continuous, and hence measurable. Furthermore, |f(z,y)| <

x~3/2. The function g(z,y) = /2 is non-negative and measurable on E, hence by Tonelli’s
Theorem,

/E F@w) dOx N () < /E oz, y) (A x N)(z,3)

1 x
//x*S/Qdydx
o Jo
1
= /x*1/2dx:2.
0

Notice that the integrands are Riemann integrable, hence the Riemann integral equals the
Lebesgue integral. This shows that f is A x A integrable on E.

Solution (b) : By Fubini’s Theorem

//fzy)d)\ ) dA(y //f(:vyd)\ ) dA(z).

Notice that for each fixed 0 < 2 < 1, the function f(z,y) is Riemann-integrable in y on the
interval (0, x) and

xr
—3/2 . TY dy — 2 i)
/0 x COb(2x) y=_u ,

is Riemann-integrable in z on the interval (0, 1), and

1
2
/ STV e = 4
o T ™
Thus,

/F( //f(wydk(w)dky) // 2 cos( )dydgc—é

Let (X, A, ) be a probability space (i.e. p(X) = 1) and let {f,} be a sequence in £!(x) such
that [y |fuldp =n for all n > 1. Let

and the function %w’l/z

Ay ={z: |fula /fndul>n

(a) Show that (mm21 Unsm An) =0.
(b) Use part (a) to show that for every e > 0 there exists mg > 1 such that

plr € X o |fo(z)] < n® +n, foralln >me} >1—e.
Proof (a) By Markov Inequality we have

1 2n 2
“( n) = 3 /X ‘fn(fﬂ) /X fndu| dp —= =3

o0 oo 2
Since Z w(Ay) = Z 2 < 00, it follows by Borel-Cantelli Lemma (Exercise 6.9) that

n=1

w mUA" =0.

m>1n>m

Proof (b) By part (a) we have u (Ule Nosm A;) = 1. By Theorem 4.4(iii),

lim_p NA =l N4]=1

n>m m>1n>m



AC

n>mg “n

Hence, given € > 0 there exists my > 1 such that u (ﬂn>m0 A%) >1—e Butforz €N

one has for n > my,
ful)] — | / fuda] < |fla) — / fule) dul <0,

and thus, |f,(7)] < n® + n. This implies that

plr € X ¢ |fu(z)| <n® +n, for all n > me} > p m ATl >1—e

n>mgo

Suppose p and v are finite measures on the measurable space (X,.A) which have the same null
sets. Show that there exists a measurable function f such that 0 < f < oo p a.e. and v a.e. and
for all A € A one has

V(A):/Afdu and M(A):/A%du.

Proof The fact that p and v have the same null sets implies that ¥ < p and p < v (in fact
in this case we refer to p and v as equivalent measure). So the notions p a.e. and v a.e. are
the same. By Radon-Nikodym Theorem there exist f € £} (1) and g € £1 (v) such that for all
Ae A,

V(A):/Afdu and M(A)ZAng.

Furthermore, the functions f and g are unique p and v a.e. By Exercise 1 of the last set of
exercises exercisesRadonNikodym.pdf, we have for any A € A,

Z/(A):/AldV:/Afd,u:/Afgdy.

By Corollary 10.14(i) this implies that 1 = fg v and hence p a.e. From this and Corollary 10.13
we conclude that 0 < f < oo and g =1/f p and v a.e.

Let (X, A, ) be a finite measure space and f,, f € M(A), n > 1. Show that f, converges to f
| fn — £

in ¢ measure if and only if lim | —————du =0.
Solution: First note that M < 1foralln > 1, and since p1(X) < oo we have 1 € L' (u).

Now assume that f,, L f,and let €,0 > 0, then there exists N such that
p{z e X | fn(x) — f(z)| > d}) <e, foralln> N.
Let A={z € X :|fu(x) — f(z)| > &}, then for all n > N

|f’n_f| _ |fn_f| ‘f’n_fl
/1+\fn—f|du_/,41+\fn—f|du+/Ac1+|fn—f\dM§/Aldu+/c5dﬂ'

Thus, for all n > N
/Mdﬂ < e+ ou(X).
L+ [fn = f]
. | fn = 1]
Thus, lim —————du=0.
n—oo 1+|fn*f|

Conversely, assume lim |fr — 1l

—————dp =0, and let € > 0. There exists N such that

/%dﬂ<€2/(l+e), for all n > N.

Observe first that
|fn - f‘ €

|fn_f|>€ <:>1+|fn—f| >1+€,




Thus, by Markov Inequality, we have for all n > N

e € X |fule) — f@) > ) =ulfw e x - =T €

1+e€

‘fn_ﬂ

>
1+|fn_f| 1+4+e€
Thus, f, = f.

b <

€

/

1+|fn_.f‘

dp < e.

ot



