
Universiteit Utrecht Mathematisch Instituut 3584 CD Utrecht

Measure and Integration: Exercise on Radon-Nikodym Theorem, 2014-15

1. Let (E,B, ⌫) be a measure space, and h : E ! R a non-negative measurable func-

tion. Define a measure µ on (E,B) by µ(A) =

R
A

hd⌫ for A 2 B. Show that for

every non-negative measurable function F : E ! R one has

Z

E

F dµ =

Z

E

Fh d⌫.

Conclude that the result is still true for F 2 L1
(µ) which is not necessarily non-

negative.

Proof Suppose first that F = 1

A

is the indicator function of some measurable set

A 2 B. Then,
Z

E

F dµ = µ(A) =

Z

A

h d⌫ =

Z

E

1

A

hd⌫ =

Z

E

Fhd⌫.

Suppose now that F =

nX

k=1

↵

k

1

A

k

is a non-negative measurable step function. Then,

Z

E

F dµ =

nX

k=1

↵

k

µ(A

k

) =

nX

k=1

↵

k

Z

E

1

A

hd⌫ =

Z

E

nX

k=1

↵

k

1

A

hd⌫ =

Z

E

Fhd⌫.

Suppose that F is a non-negative measurable function, then there exists a sequence

of non-negative measurable step functions F

n

such that F

n

" F. Then, F

n

h " Fh,

and by Beppo-Levi,

Z

E

F dµ = lim

n!1

Z

E

F

n

dµ = lim

n!1

Z

E

F

n

hd⌫ =

Z

E

Fhd⌫.

Finally, suppose that F 2 L1
(µ). Since F

+
, F

�
are non-negative, we have

Z

E

F

+
dµ =

Z

E

F

+
h d⌫ and

Z

E

F

�
dµ =

Z

E

F

�
h d⌫.

Since F 2 L1
(µ), from the above we see that Fh 2 L1

(⌫), hence

Z

E

F dµ =

Z

E

F

+
dµ�

Z

E

F

�
dµ =

Z

E

F

+
h d⌫ �

Z

E

F

�
h d⌫ =

Z

E

Fh d⌫.

2. Let (X,B, ⌫) be a measure space, and suppose X =

1[

n=1

E

n

, where {E
n

} is a collec-

tion of pairwise disjoint measurable sets such that ⌫(E

n

) < 1 for all n � 1. Define

µ on B by µ(B) =

1X

n=1

2

�n

⌫(B \ E

n

)/(⌫(E

n

) + 1).
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(a) Prove that µ is a finite measure on (X,B).
(b) Let B 2 B. Prove that µ(B) = 0 if and only if ⌫(B) = 0.

(c) Find explicitly two positive integrable functions f and g such that

µ(A) =

Z

A

f d⌫ and ⌫(A) =

Z

A

g dµ,

for all A 2 B.

Proof (a): Clearly µ(;) = 0, and

µ(X) =

1X

n=1

2

�n

⌫(E

n

)/(⌫(E

n

) + 1) 
1X

n=1

2

�n

= 1 < 1.

Now, let (C

n

) be a disjoint sequence in B. Then,

µ(

S1
m=1 Cm

) =

1X

n=1

2

�n

⌫((

1[

m=1

C

m

) \ E

n

)/(⌫(E

n

) + 1)

=

1X

n=1

2

�n

1X

m=1

⌫(C

m

\ E

n

)/(⌫(E

n

) + 1)

=

1X

m=1

1X

n=1

2

�n

⌫(C

m

\ E

n

)/(⌫(E

n

) + 1)

=

1X

m=1

µ(C

m

).

Thus, µ is a finite measure.

Proof (b): Suppose that ⌫(B) = 0, then ⌫(B \E

n

) = 0 for all n, hence µ(B) = 0.

Conversely, suppose µ(B) = 0, then ⌫(B \ E

n

) = 0 for all n. Since X =

1[

n=1

E

n

(disjoint union), then

⌫(B) = ⌫(B \
1[

n=1

E

n

) = ⌫(

1[

n=1

(B \ E

n

)) =

1X

n=1

⌫(B \ E

n

) = 0.

Proof (c): By (b), we have µ ⌧ ⌫ and ⌫ ⌧ ⌫, so we are looking for the Radon

Nikokodym derivatives of µ with respect to ⌫ and of ⌫ with respect to µ. Let

f =

1X

n=1

2

�n

⌫(E

n

) + 1

1

E

n

. Then, f > 0 and

Z
f d⌫ =

1X

n=1

2

�n

⌫(B \ E

n

)/(⌫(E

n

) + 1) = µ(A)is 
1X

n=1

2

�n

= 1,

hence, f 2 L1
(⌫) is one of the required Radon Nikodym derivatives.. Let g = 1/f .

Since f > 0 and measurable then so is 1/f . Furthermore, for any A 2 B, and by

exercise 1,

⌫(A) =

Z

A

f

1

f

d⌫ =

Z
1

f

dµ.

Thus, g = 1/f is the second required Radon Nikodym derivative.
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3. Suppose µ, ⌫ and � are finite measures on (X,B) such that µ ⌧ ⌫ and ⌫ ⌧ �.

Show that µ ⌧ � and

dµ

d�

=

dµ

d⌫

· d⌫
d�

� a.e.

Proof: Suppose A 2 B satisfies �(A) = 0. Since ⌫ ⌧ �, then nu(A) = 0 and since

µ ⌧ ⌫ we get µ(A) = 0. Thus, µ ⌧ �. Again using exercise 1, we have for any

B 2 B, Z

B

dµ

d⌫

· d⌫
d�

d� =

Z

B

dµ

d⌫

d⌫ = µ(B) =

Z

B

dµ

d�

d�.

By the uniqueness of the Radon-Nikodym derivative, we have

dµ

d�

=

dµ

d⌫

· d⌫
d�

� a.e.

4. Suppose that µ

i

, ⌫

i

are finite measures on (X,A) with µ

i

⌧ ⌫

i

for i = 1, 2. Let ⌫ =

⌫1⇥ ⌫2 and µ = µ1⇥µ2 be the corresponding product measures on (X⇥X,A⌦A).

(a) Show that µ ⌧ ⌫.

(b) Prove that

dµ

d⌫

(x, y) =

dµ1

d⌫1
(x) · dµ2

d⌫2
(y) ⌫ a.e.

Proof(a): For E 2 A ⌦ A and x 2 X, let E

x

= {y 2 X : (x, y) 2 E}. Then, by

Theorem 13.5 the functions x ! µ2(Ex

) and x ! ⌫2(Ex

) are A measurable, and

⌫(E) =

Z

X

⌫2(Ex

) d⌫1(x), and µ(E) =

Z

X

µ2(Ex

) dµ1(x).

Assume ⌫(E) = 0, then by Theorem 10.9(i) we have ⌫2(Ex

) = 0 ⌫1 a.e. Since

µ2 ⌧ ⌫2, we have µ2(Ex

) = 0 ⌫1 a.e Since µ1 ⌧ ⌫1, we get µ2(Ex

) = 0 µ1 a.e Again

by Theorem 10.9(i), we have

µ(E) =

Z

X

µ2(Ex

) dµ1(x) = 0.

Therefore, µ ⌧ ⌫.

Proof(b): Let E 2 A⌦A, then by the Radon Nikodym Theorem

dµ

d⌫

unique ⌫ a.e.

function such that µ(E) =

R
E

dµ

d⌫

(x, y) d⌫(x, y). By Exercise 1, and Theorem 13.5

µ(E) =

Z Z
1

E

x

(y) dµ2(y) dµ1(x)

=

Z
(

Z
1

E

x

(y)

dµ2

d⌫2
(y)d⌫2(y)) dµ1(x)

=

Z
(

Z
1

E

x

(y)

dµ2

d⌫2
(y)d⌫2(y))

dµ1

d⌫1
(x) d⌫1(x)

=

Z Z
1

E

(x, y)

dµ2

d⌫2
(y)

dµ1

d⌫1
(x) d⌫2(y)d⌫1(x)

=

Z

E

dµ2

d⌫2
(y)

dµ1

d⌫1
(x) d⌫(x, y).

By the uniqueness of the Radon Nikodym Derivative we have

dµ

d⌫

(x, y) =

dµ1

d⌫1
(x) · dµ2

d⌫2
(y)

⌫ a.e.
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