Measure and Integration Exercises 4

1. Let $A, B \subseteq \mathbb{R}^{N}$, and suppose that $A \subseteq B$ and $|B \backslash A|_{e}=0$. Show that if A is measurable, then B is measurable and $|A|=|B|$.
2. Prove that $|x+E|_{e}=|E|_{e}$ for all $x \in \mathbb{R}^{N}$ and every $E \subseteq \mathbb{R}^{N}$.
3. Let $A \subseteq \mathbb{R}^{M}$. The inner Lebesgue measure of A is defined by

$$
|A|_{i}=\sup \left\{|K|_{e}: K \subseteq A, K \text { is compact }\right\} .
$$

Prove the following.
(a) $|A|_{i} \leq|A|_{e}$ for all $A \in \mathbb{R}^{M}$.
(b) If $A \subseteq B$, then $|A|_{i} \leq|B|_{i}$.
(c) If A_{1}, A_{2}, \ldots are disjoint, then $\left|\bigcup_{n=1}^{\infty} A_{n}\right|_{i} \geq \sum_{n=1}^{\infty}\left|A_{n}\right|_{i}$.
(d) If A is compact or open, then $|A|_{e}=|A|_{i}$.

