Boedapestlaan 6

3584 CD Utrecht

Measure and Integration Exercises 6

- 1. Let E be an uncountable set, and $\mathcal{B} = \{A \subseteq E : A \text{ or } A^c \text{ is countable}\}$. Show that \mathcal{B} is a σ -algebra over E.
- 2. Suppose E is a set, C a π -system over E and $\mathcal{B} = \sigma(E; C)$ (the smallest σ -algebra over E containing C). Let μ and ν be two measures on (E, \mathcal{B}) such that (i) $\mu(E) = \nu(E) < \infty$, and (ii) $\mu(C) = \nu(C)$ for all $C \in C$. Let $\mathcal{H} = \{A \in \mathcal{B} : \mu(A) = \nu(A)\}$.
 - (a) Show that \mathcal{H} is a λ -system over E.
 - (b) Show that $\mathcal{B} = \mathcal{H}$, and conclude that $\mu(A) = \nu(A)$ for all $A \in \mathcal{B}$.
- 3. A collection \mathcal{M} of sets is said to be a monotone class if it satisfies the following two properties:
 - (i) if $\{A_n\} \subseteq \mathcal{M}$ with $A_1 \subseteq A_2 \subseteq \ldots$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{M}$, and
 - (ii) if $\{B_n\}\subseteq \mathcal{M}$ with $B_1\supseteq B_2\supseteq \ldots$, then $\bigcap_{n=1}^{\infty} B_n\in \mathcal{M}$.
 - (a) Show that the intersection of an arbitrary collection of monotone classes is a monotone class.
 - (b) Let E be a set, and \mathcal{B} a collection of subsets of E. Show that \mathcal{B} is a σ -algebra if and only if \mathcal{B} is an algebra and a monotone class.
 - (c) Let \mathcal{A} be an algebra over E, and \mathcal{M} the smallest monotone class containing \mathcal{A} , i.e. \mathcal{M} is the intersection of all monotone classes containing \mathcal{A} . Show that \mathcal{M} is an algebra.
 - (d) Using the same notation as in part (c), show that $\mathcal{M} = \sigma(E, \mathcal{A})$, where $\sigma(E, \mathcal{A})$ is the smallest σ -algebra over E containing the algebra \mathcal{A} .