Universiteit Utrecht

Mathematisch Instituut

Universiteit Utrecht

Measure and Integration Exercises 6

- 1. Let *E* be an uncountable set, and $\mathcal{B} = \{A \subseteq E : A \text{ or } A^c \text{ is countable}\}$. Show that \mathcal{B} is a σ -algebra over *E*.
- 2. Let *E* be a set, and $C \subseteq \mathcal{P}(E)$. Consider $\sigma(E; C)$, the smallest σ -algebra over *E* containing C, and let \mathcal{D} be the collection of sets $A \in \sigma(E; C)$ with the property that there exists a countable collection $C_0 \subseteq C$ (depending on *A*) such that $A \in \sigma(E; C_0)$.
 - (a) Show that \mathcal{D} is a σ -algebra over E.
 - (b) Show that $\mathcal{D} = \sigma(E; \mathcal{C})$.
- 3. A collection \mathcal{M} of sets is said to be a *monotone class* if it satisfies the following two properties:
 - (i) if $\{A_n\} \subseteq \mathcal{M}$ with $A_1 \subseteq A_2 \subseteq \ldots$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{M}$, and
 - (ii) if $\{B_n\} \subseteq \mathcal{M}$ with $B_1 \supseteq B_2 \supseteq \ldots$, then $\bigcap_{n=1}^{\infty} B_n \in \mathcal{M}$.
 - (a) Show that the intersection of an arbitrary collection of monotone classes is a monotone class.
 - (b) Let E be a set, and \mathcal{B} a collection of subsets of E. Show that \mathcal{B} is a σ -algebra if and only if \mathcal{B} is an algebra and a monotone class.
 - (c) Let \mathcal{A} be an algebra over E, and \mathcal{M} the smallest monotone class containing \mathcal{A} , i.e. \mathcal{M} is the intersection of all monotone classes containing \mathcal{A} . Show that \mathcal{M} is an algebra.
 - (d) Using the same notation as in part (c), show that $\mathcal{M} = \sigma(E, \mathcal{A})$, where $\sigma(E, \mathcal{A})$ is the smallest σ -algebra over E containg the algebra \mathcal{A} .