Mathematisch Instituut

3584 CD Utrecht

Measure and Integration Exercises 10

- 1. Let (E, \mathcal{B}, μ) be a measure space. Let (f_n) be a sequence of non-negative measurable functions.
 - (a) Prove that

$$\int_E \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int_E f_n d\mu.$$

(b) Let (g_n) be a sequence of μ -integrable functions on E such that $\sum_{n=1}^{\infty} \int_{E} |g_n| d\mu < \infty$. Show that $\sum_{n=1}^{\infty} g_n$ is finite μ almost everywhere, and

$$\int_E \sum_{n=1}^{\infty} g_n d\mu = \sum_{n=1}^{\infty} \int_E g_n d\mu.$$

(c) Let f be a non-negative integrable function on E. Define ν on \mathcal{B} by

$$\nu(A) = \int_A f \, d\mu.$$

Show that ν is a finite measure on \mathcal{B} .

- 2. Consider the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$, where μ is the counting measure on $\mathcal{P}(\mathbb{N})$, i.e. $\mu(A)$ is equal to the number of elements in A.
 - (a) Show that for any $f: \mathbb{N} \to [0, \infty]$, one has

$$\int_{\mathbb{N}} f \, d\mu = \sum_{k=1}^{\infty} f(k).$$

(b) For each $n \ge 1$, let $(a_k^n)_k$ be a sequence of real numbers such that $0 \le a_k^n \le a_k^{n+1}$ for all k and n. Show that

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} a_k^n = \sum_{k=1}^{\infty} \lim_{n \to \infty} a_k^n.$$

- 3. Let (E, \mathcal{B}, μ) be a measure space, and $f: E \to [0, \infty]$ a measurable function.
 - (a) Show that if $\int_E f d\mu < \infty$, then $\lim_{n\to\infty} n\mu(f \ge n) = 0$.
 - (b) Suppose that $\mu(E) < \infty$. Show that

$$\int_E f \, d\mu < \infty \text{ if and only if } \sum_{n=0}^\infty \mu(f>n) < \infty.$$