Mathematisch Instituut

Measure and Integration Exercises 11

3584 CD Utrecht

- 1. Let (E, \mathcal{B}, μ) be a measure space, and $f_n : E \to \mathbb{R}$ a sequence of measurable real valued functions on (E, \mathcal{B}, μ) . Suppose $f, g : E \to \mathbb{R}$ are measurable functions such that $f_n \to f$ in μ -measure and $f_n \to g$ μ a.e. Show that f = g μ a.e.
- 2. Consider the measure space $([a, b], \mathcal{B}, \lambda)$, where \mathcal{B} is the Borel σ -algebra on [a, b], and λ is the restriction of the Lebesgue measure on [a, b]. Let $f : [a, b] \to \mathbb{R}$ be any continuous function. Show that the Riemann integral of f on [a, b] is equal to the Lebesgue integral of f on [a, b], i.e.

$$(R) \int_{a}^{b} f(x)dx = \int_{[a,b]} fd\lambda.$$

- 3. Let (E, \mathcal{B}, μ) be a measure space, and $f_n : E \to \mathbb{R}$ a sequence of measurable real valued functions on (E, \mathcal{B}, μ) .
 - (a) Let $f: E \to \mathbb{R}$ be a measurable function such that $\sum_{n=0}^{\infty} \mu(|f f_n| \ge \epsilon)) < \infty$ for all $\epsilon > 0$. Show that $f_n \to f$ in μ -measure and μ a.e.
 - (b) Let (ϵ_n) be a sequence of positive real numbers such that $\sum_n \epsilon_n < \infty$. Prove that if $\sum_{n=0}^{\infty} \mu(|f_{n+1} f_n| \ge \epsilon_n)) < \infty$, then there exists a measurable function $g: E \to R$ such that $f_n \to g$ in μ -measure and μ a.e.
- 4. Let f and $\{f_n\}$ be measurable real valued functions on a measure space (E, \mathcal{B}, μ) such that $f_n \to f$ in μ -measure, and $\sup_{n \ge 1} ||f_n||_{L^1(\mu)} < \infty$. Show that f is μ -integrable, and

$$\lim_{n \to \infty} \left| ||f_n||_{L^1(\mu)} - ||f||_{L^1(\mu)} - ||f_n - f||_{L^1(\mu)} \right| = |||f_n| - |f| - |f_n - f|||_{L^1(\mu)} = 0.$$

Conclude that if $||f_n||_{L^1(\mu)} \to ||f||_{L^1(\mu)} \in \mathbb{R}$, then $||f_n - f||_{L^1(\mu)} \to 0$.