Universiteit Utrecht

Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Measure and Integration Exercises 11

- 1. Let (E, \mathcal{B}, μ) be a measure space, and $f_n : E \to \mathbb{R}$ a sequence of measurable real valued functions on (E, \mathcal{B}, μ) .
 - (a) Suppose $f: E \to \mathbb{R}$ is measurable. Show that

$$\{x \in E : \lim_{n \to \infty} f_n(x) \neq f(x)\} = \bigcup_{l=1}^{\infty} \bigcap_{m=1}^{\infty} \{x \in E : \sup_{n \ge m} |f_n(x) - f(x)| \ge 1/l\}.$$

(b) Show that if $f_n \to f \ \mu$ a.e., then for every $\epsilon > 0$

$$\mu(\bigcap_{m=1}^{\infty} \{x \in E : \sup_{n \ge m} |f_n(x) - f(x)| \ge \epsilon\}) = 0.$$

- 2. Consider the measure space $([0, 1), \mathcal{B}_{[0,1)}, \lambda_{[0,1)})$, where $\mathcal{B}_{[0,1)}$ and $\lambda_{[0,1)}$ are the restrictions of the Borel σ -algebra and Lebesgue measure on [0, 1). Define a sequence of measurable functions f_n on [0, 1) as follows: given $n \geq 1$, there exist an $m \geq 0$ and $0 \leq l \leq 2^m - 1$ such that $n = 2^m + l$ (note that this representation is unique). Set $f_n = f_{2^m+l} = \mathbb{1}_{[l/2^m, (l+1)/2^m]}$.
 - (a) Determine explicitly $f_1, f_2, f_3, f_4, f_5, f_6, f_7$.
 - (b) Show that $\limsup_{n \to \infty} f_n(x) = 1$ for all $x \in [0, 1)$.
 - (c) Show that $\lim_{n\to\infty} ||f||_{L^1(\lambda_{[0,1)})} = 0$. Conclude that L^1 -convergence does not imply μ a.e. convergence.
- 3. Consider the measure space $([a, b], \mathcal{B}, \lambda)$, where \mathcal{B} is the Borel σ -algebra on [a, b], and λ is the restriction of the Lebesgue measure on [a, b]. Let $f : [a, b] \to \mathbb{R}$ be any continuous function. Show that the Riemann integral of f on [a, b] is equal to the Lebesgue integral of f on [a, b], i.e.

$$(R) \int_{a}^{b} f(x)dx = \int_{[a,b]} fd\lambda$$

4. Let (E, \mathcal{B}, μ) be a measure space, and $f_n : E \to \mathbb{R}$ a sequence of measurable real valued functions on (E, \mathcal{B}, μ) . Let $f : E \to \mathbb{R}$ be a measurable function such that $\sum_{n=0}^{\infty} \mu(|f - f_n| \ge \epsilon)) < \infty$ for all $\epsilon > 0$. Show that $f_n \to f$ in μ -measure and μ a.e.