Universiteit Utrecht

Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Measure and Integration Exercises 12

- 1. Let (E, \mathcal{B}, μ) be a measure space, and $f_n : E \to \mathbb{R}$ a sequence of measurable real valued functions on (E, \mathcal{B}, μ) . Suppose $f, g : E \to \mathbb{R}$ are measurable functions such that $f_n \to f$ in μ -measure and $f_n \to g \mu$ a.e. Show that $f = g \mu$ a.e.
- 2. Consider the measure space $([0, \infty), \mathcal{B}, \lambda)$, where \mathcal{B} and λ are the restriction of the Borel σ -algebra and Lebesgue measure to the interval $[0, \infty)$. Define $f_n : [0, \infty) \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} 1 & \text{if } n \le x \le n + \frac{1}{n} \\ 0 & \text{elsewhere }. \end{cases}$$

- (a) Prove that $f_n \to 0 \lambda$ a.e. and in λ -measure.
- (b) Prove that condition (3.3.8) of Theorem 3.3.7 does not hold, i.e. it is not true that

$$\lim_{m \to \infty} \lambda(\sup_{n \ge m} |f_n| \ge \epsilon) = 0 \text{ for all } \epsilon > 0.$$

- 3. Let (E, \mathcal{B}, μ) be a measure space, and $f_n : E \to \mathbb{R}$ a sequence of measurable real valued functions on (E, \mathcal{B}, μ) . Let (ϵ_n) be a sequence of positive real numbers such that $\sum_n \epsilon_n < \infty$. Prove that if $\sum_{n=0}^{\infty} \mu(|f_{n+1} f_n| \ge \epsilon_n)) < \infty$, then there exists a measurable function $g: E \to R$ such that $f_n \to g$ in μ -measure and μ a.e.
- 4. Let f and $\{f_n\}$ be measurable real valued functions on a measure space (E, \mathcal{B}, μ) such that $f_n \to f$ in μ -measure, and $\sup_{n\geq 1} ||f_n||_{L^1(\mu)} < \infty$. Show that f is μ -integrable, and

$$\lim_{n \to \infty} \left| ||f_n||_{L^1(\mu)} - ||f||_{L^1(\mu)} - ||f_n - f||_{L^1(\mu)} \right| = |||f_n| - |f| - |f_n - f|||_{L^1(\mu)} = 0.$$

Conclude that if $||f_n||_{L^1(\mu)} \to ||f||_{L^1(\mu)} \in \mathbb{R}$, then $||f_n - f||_{L^1(\mu)} \to 0$.