Measure and Integration Solutions 14

1. Let (E, \mathcal{B}) be a measure space, and μ_{1}, μ_{2} and $\lambda \sigma$-finite measures on (E, \mathcal{B}).
(a) If $\mu_{1} \perp \nu$ and $\mu_{2} \perp \nu$, then $\mu_{1}+\mu_{2} \perp \nu$.
(b) If $\mu_{1} \ll \nu$ and $\mu_{2} \perp \nu$, then $\mu_{1} \perp \mu_{2}$.
(c) If $\mu_{1} \ll \nu$ and $\mu_{1} \perp \nu$, then μ_{1} is the zero measure.
2. Suppose μ is a finite measure and ν a σ-finite measure (E, \mathcal{B}). Show that the Lebesgue decomposition of μ with respect to ν is unique, i.e. prove that if $\mu=$ $\mu_{a}+\mu_{\sigma}=\mu_{a}^{\prime}+\mu_{\sigma}^{\prime}$ with $\mu_{a} \ll \nu, \mu_{a}^{\prime} \ll \nu, \mu_{\sigma} \perp \nu$ and $\mu_{\sigma}^{\prime} \perp \nu$, then $\mu_{a}=\mu_{a}^{\prime}$ and $\mu_{\sigma}=\mu_{\sigma}^{\prime}$.
3. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra. Define σ on $\mathcal{B}(\mathbb{R})$ by $\sigma(\Gamma)=\sum_{n \in \mathbb{Z} \cap \Gamma} \frac{1}{n^{2}}$.
(a) Show that σ is a measure on $\mathcal{B}(\mathbb{R})$ such that $\sigma \perp \lambda$, where λ is Lebesgue measure on $\mathcal{B}(\mathbb{R})$.
(b) Let $f \in L^{1}(\lambda)$ be non-negative, and define μ on $\mathcal{B}(\mathbb{R})$ by $\mu(\Gamma)=\int_{\Gamma} f d \lambda$. Let $\nu=\mu+\sigma$. Find the Lebesgue decomposition of ν with respect to λ.
4. Let (E, \mathcal{B}, ν) be a measure space, and $h: E \rightarrow \mathbb{R}$ a non-negative measurable function. Define a measure μ on (E, \mathcal{B}) by $\mu(A)=\int_{A} h d \nu$ for $A \in \mathcal{B}$. Show that for every measurable function $F: E \rightarrow \mathbb{R}$ one has

$$
\int_{E} F d \mu=\int_{E} F h d \nu
$$

in the sense that if one integral exists, then the other integral also exists, and they are equal.
5. Suppose that μ and ν are finite measures on (E, \mathcal{B}) such that $\mu \ll \nu$ and $\nu \ll \mu$, i.e. μ and ν have the same sets of measure zero. Show that the Radon-Nikodym derivatives $\frac{d \mu}{d \nu}$ and $\frac{d \nu}{d \mu}$ are positive ν a.e. (and hence μ a.e.) and $\frac{d \mu}{d \nu} \cdot \frac{d \nu}{d \mu}=1 \nu$ and μ a.e.

