Universiteit Utrecht

Mathematisch Instituut

Universiteit Utrecht

Measure and Integration Exercises 14

1. (E, \mathcal{B}, μ) be a σ -finite measure space, and $f: E \to [0, \infty)$ measurable. Define

$$\Gamma(f) = \{ (x,t) \in E \times [0,\infty) : t < f(x) \},\$$

and

$$\overline{\Gamma}(f) = \{ (x,t) \in E \times [0,\infty) : t \le f(x) \}.$$

- (a) Show that the function $F : E \times [0, \infty) \to \mathbb{R}$ given by F(x, t) = f(x) t is measurable with respect to the product σ -algebra $\mathcal{B} \times \mathcal{B}_{[0,\infty)}$, where $\mathcal{B}_{[0,\infty)}$ is the restriction of the Borel σ -algebra on $[0, \infty)$.
- (b) Show that $\Gamma(f), \overline{\Gamma}(f) \in \mathcal{B} \times \mathcal{B}_{[0,\infty)}$, and

$$(\mu \times \lambda_{\mathbb{R}})(\Gamma(f)) = (\mu \times \lambda_{\mathbb{R}})(\overline{\Gamma}(f)) = \int_{E} f(x) d\mu(x).$$

- 2. Let $E = \{(x, y) : 0 < x < \infty, 0 < y < 1\}$. We consider on E the restriction of the product Borel σ -algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f : E \to \mathbb{R}$ be given by $f(x, y) = y \sin x e^{-xy}$.
 - (a) Show that f is $\lambda \times \lambda$ integrable on E.
 - (b) Applying Fubini's Theorem to the function f, show that

$$\int_0^\infty \frac{\sin x}{x} \left(\frac{1 - e^{-x}}{x} - e^{-x} \right) dx = \frac{1}{2} \log 2.$$

3. Let (L, (,)) be an inner product space, and let $||x||_L = (x, x)^{1/2}$. $x \in L$.

- (a) Let $(x_n) \subseteq L$, and $x \in L$. Show that if $\lim_{n \to \infty} ||x_n x||_L = 0$, then $\lim_{n \to \infty} ||x_n||_L = ||x||_L$.
- (b) Prove that the inner product (,) is jointly continuous, i.e. if $\lim_{n \to \infty} ||x_n x||_L = 0$ and $\lim_{n \to \infty} ||y_n y||_L = 0$, then $\lim_{n \to \infty} (x_n, y_n) = (x, y)$.
- 4. Let (E, \mathcal{B}, μ) be a measure space, and let $\{f_n\} \subseteq L^2(\mu)$ be such that

$$\lim_{m \to \infty} \sup_{n \ge m} ||f_n - f_m||_{L^2(\mu)} = 0.$$

Show that there exists a function $f \in L^2(\mu)$ such that $\lim_{n \to \infty} ||f_n - f||_{L^2(\mu)} = 0$. In other words $(L^2(\mu), || ||_{L^2(\mu)})$ is a complete metric space.