Universiteit Utrecht

Mathematisch Instituut



Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

## Measure and Integration Exercises 15

1. Let  $(E, \mathcal{B}, \mu)$  be a measure space. Show (without using Cauch-Schwartz inequality) that if  $f, g \in L^2(\mu)$ , then

$$\int_E |fg| \, d\mu \le ||f||_{L^2(\mu)} \, ||g||_{L^2(\mu)}.$$

This is known as Hölders inequality. (Hint: for any real numbers a, b one has  $2|ab| \le a^2 + b^2$ , why?)

- 2. Let  $(E, \mathcal{B}, \mu)$  be a finite measure space. Show that  $L^2(\mu) \subseteq L^1(\mu)$ . Show that the result is not true in case  $\mu$  is not a finite measure
- 3. Let  $\mu$  and  $\nu$  be two measures on the measure space  $(E, \mathcal{B})$  such that  $\mu(A) \leq \nu(A)$ for all  $A \in \mathcal{B}$ . Show that if f is any non-negative measurable function on  $(E, \mathcal{B})$ , then  $\int_E f d\mu \leq \int_E f d\nu$ . Conclude that if  $\nu$  is a finite measure, then  $L^2(\nu) \subseteq L^1(\nu) \subseteq L^1(\mu)$ .
- 4. Let  $(E, \mathcal{B})$  be a measurable space, and  $\mu_1, \mu_2$  and  $\nu$  measures on  $(E, \mathcal{B})$ . Show the following:
  - (a) If  $\mu_1 \perp \nu$  and  $\mu_2 \perp \nu$ , then  $\mu_1 + \mu_2 \perp \nu$ .
  - (b) If  $\mu_1 \ll \nu$  and  $\mu_2 \perp \nu$ , then  $\mu_1 \perp \mu_2$ .
  - (c) If  $\mu_1 \ll \nu$  and  $\mu_1 \perp \nu$ , then  $\mu_1$  is the zero measure.