Measure and Integration Exercises 16

1. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra. Define σ on $\mathcal{B}(\mathbb{R})$ by $\sigma(\Gamma)=\sum_{n \in \mathbb{Z} \backslash\{0\} \cap \Gamma} \frac{1}{n^{2}}$.
(a) Show that σ is a measure on $\mathcal{B}(\mathbb{R})$ such that $\sigma \perp \lambda$, where λ is Lebesgue measure on $\mathcal{B}(\mathbb{R})$.
(b) Let $f \in L^{1}(\lambda)$ be non-negative, and define μ on $\mathcal{B}(\mathbb{R})$ by $\mu(\Gamma)=\int_{\Gamma} f d \lambda$. Let $\nu=\mu+\sigma$. Find the Lebesgue decomposition of ν with respect to λ.
2. Let (E, \mathcal{B}, ν) be a measure space, and $h: E \rightarrow \mathbb{R}$ a non-negative measurable function. Define a measure μ on (E, \mathcal{B}) by $\mu(A)=\int_{A} h d \nu$ for $A \in \mathcal{B}$. Show that for every measurable function $F: E \rightarrow \mathbb{R}$ one has

$$
\int_{E} F d \mu=\int_{E} F h d \nu
$$

in the sense that if one integral exists, then the other integral also exists, and they are equal.
3. Suppose that μ_{i}, ν_{i} are finite measures on (E, \mathcal{B}) with $\mu_{i} \ll \nu_{i}, i=1,2$. Let $\nu=\nu_{1} \times \nu_{2}$ and $\mu=\mu_{1} \times \mu_{2}$.
(a) Show that $\mu \ll \nu$.
(b) Prove that $\frac{d \mu}{d \nu}(x, y)=\frac{d \mu_{1}}{d \nu_{1}}(x) \cdot \frac{d \mu_{2}}{d \nu_{2}}(y) \nu$ a.e.
4. Let (E, \mathcal{B}) be a measurable space, μ a finite measures on (E, \mathcal{B}) and ν a σ-finite measure on (E, \mathcal{B}). Show that $\mu \ll \nu$ if and only if for every $\epsilon>0$ there exists a $\delta>0$ such that if $A \in \mathcal{B}$ with $\nu(A)<\delta$, then $\mu(A)<\epsilon$.

