Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Measure and Integration Exercises 7

- 1. Let *E* be a set, and $C \subseteq \mathcal{P}(E)$. Consider $\sigma(E; C)$, the smallest σ -algebra over *E* containing C, and let \mathcal{D} be the collection of sets $A \in \sigma(E; C)$ with the property that there exists a countable collection $C_0 \subseteq C$ (depending on *A*) such that $A \in \sigma(E; C_0)$.
 - (a) Show that \mathcal{D} is a σ -algebra over E.
 - (b) Show that $\mathcal{D} = \sigma(E; \mathcal{C})$.
- 2. Let $M \subset \mathbb{R}$ be a non-Lebesgue measurable set (i.e. $M \notin \overline{\mathcal{B}}_{\mathbb{R}}$.). Define $A = \{(x, x) \in \mathbb{R}^2 : x \in M\}$, and let $g : \mathbb{R} \to \mathbb{R}^2$ be given by g(x) = (x, x).
 - (a) Show that $A \in \overline{\mathcal{B}}_{\mathbb{R}^2}$. i.e. A is Lebesgue measurable. (Hint: use the fact that Lebesgue measure is rotation invariant).
 - (b) Show that g is a Borel-measurable function, i.e. $g^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$ for each $B \in \mathcal{B}_{\mathbb{R}^2}$.
 - (c) Show that $A \notin \mathcal{B}_{\mathbb{R}^2}$, i.e. A is not Borel measurable.
- 3. Let (E, \mathcal{B}, μ) be a measure space, and $\{A_n\}$ a sequence in \mathcal{B} . Define

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m,$$

and

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m.$$

- (a) Prove that $\mu(\liminf_{n\to\infty} A_n) \leq \liminf_{n\to\infty} \mu(A_n)$.
- (b) Suppose that $\mu(\bigcup_{n=1}^{\infty} A_n) < \infty$. Prove that $\mu(\limsup_{n \to \infty} A_n) \ge \limsup_{n \to \infty} \mu(A_n)$.
- (c) Prove that if $\sum_{n=1}^{\infty} \mu(A_n) < \infty$, then $\mu(\limsup_{n \to \infty} A_n) = 0$. (This is known as the Borel-Cantelli Lemma).
- 4. Let $\mathcal{C} = \{(a, \infty) : a \in \mathbb{R}\}$, and let $\mathcal{B}_{\mathbb{R}}$ be the Borel σ -algebra over \mathbb{R} .
 - (a) Show that $\mathcal{B}_{\mathbb{R}} = \sigma(E; \mathcal{C})$.
 - (b) Let (E, \mathcal{B}, μ) be a **finite** measure space. Suppose $f : E \to \mathbb{R}$ satisfies $f^{-1}((a, \infty)) \in \mathcal{B}$ for all $a \in \mathbb{R}$. Show that f is measurable, i.e. $f^{-1}(A) \in \mathcal{B}$ for all $A \in \mathcal{B}_{\mathbb{R}}$.
 - (c) Suppose ν is a finite measure on $\mathcal{B}_{\mathbb{R}}$, and $\mu(f^{-1}(a,\infty)) = \nu((a,\infty))$ for all $a \in \mathbb{R}$. Show that $\mu(f^{-1}(A)) = \nu(A)$ for all $A \in \mathcal{B}_{\mathbb{R}}$.