Measure and Integration Solutions 7

1. Suppose E is a set, \mathcal{C} a π-system over E and $\mathcal{B}=\sigma(E ; \mathcal{C})$ (the smallest σ-algebra over E containing \mathcal{C}). Let μ and ν be two measures on (E, \mathcal{B}) such that (i) $\mu(E)=$ $\nu(E)<\infty$, and (ii) $\mu(C)=\nu(C)$ for all $C \in \mathcal{C}$. Let $\mathcal{H}=\{A \in \mathcal{B}: \mu(A)=\nu(A)\}$.
(a) Show that \mathcal{H} is a λ-system over E.
(b) Show that $\mathcal{B}=\mathcal{H}$, and conclude that $\mu(A)=\nu(A)$ for all $A \in \mathcal{B}$.
2. Let (E, \mathcal{B}, μ) be a measure space, and $\overline{\mathcal{B}}^{\mu}$ be the completion of the σ-algebra \mathcal{B} with respect to the measure μ. We denote by $\bar{\mu}$ the extension of the measure μ to the σ-algebra $\overline{\mathcal{B}}^{\mu}$. Suppose $f: E \rightarrow E$ is a function such that $f^{-1}(B) \in \mathcal{B}$ and $\mu\left(f^{-1}(B)\right)=\mu(B)$ for each $B \in \mathcal{B}$, where $f^{-1}(B)=\{x \in E: f(x) \in B\}$. Show that $f^{-1}(\Gamma) \in \overline{\mathcal{B}}^{\mu}$ and $\bar{\mu}\left(f^{-1}(\Gamma)\right)=\bar{\mu}(\Gamma)$ for all $\Gamma \in \overline{\mathcal{B}}^{\mu}$.
3. Let (E, \mathcal{B}, μ) be a measure space, and $\left\{A_{n}\right\}$ a sequence in \mathcal{B}. Define

$$
\limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}
$$

and

$$
\liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_{m}
$$

(a) Prove that $\mu\left(\liminf _{n \rightarrow \infty} A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
(b) Suppose that $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)<\infty$. Prove that $\mu\left(\lim \sup _{n \rightarrow \infty} A_{n}\right) \geq \lim \sup _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
(c) Prove that if $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty$, then $\mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0$. (This is known as the Borel-Cantelli Lemma).
4. Let $\mathcal{C}=\{(a, \infty): a \in \mathbb{R}\}$, and let $\mathcal{B}_{\mathbb{R}}$ be the Borel σ-algebra over \mathbb{R}.
(a) Show that $\mathcal{B}_{\mathbb{R}}=\sigma(E ; \mathcal{C})$.
(b) Let (E, \mathcal{F}, μ) be a finite measure space. Suppose $f: E \rightarrow \mathbb{R}$ satisfies $f^{-1}(A) \in$ \mathcal{F} for all $A \in \mathcal{B}_{\mathbb{R}}$, where $\mathcal{B}_{\mathbb{R}}$ is the Borel σ-algebra over \mathbb{R}. Define μ_{f} on $\mathcal{B}_{\mathbb{R}}$ by $\mu_{f}(A)=\mu\left(f^{-1}(A)\right)$ for all $A \in \mathcal{B}_{\mathbb{R}}$. Show that μ_{f} is a measure on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$.

