Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Measure and Integration Solutions 7

- 1. Suppose *E* is a set, *C* a π -system over *E* and $\mathcal{B} = \sigma(E; \mathcal{C})$ (the smallest σ -algebra over *E* containing \mathcal{C}). Let μ and ν be two measures on (E, \mathcal{B}) such that (i) $\mu(E) = \nu(E) < \infty$, and (ii) $\mu(C) = \nu(C)$ for all $C \in \mathcal{C}$. Let $\mathcal{H} = \{A \in \mathcal{B} : \mu(A) = \nu(A)\}$.
 - (a) Show that \mathcal{H} is a λ -system over E.
 - (b) Show that $\mathcal{B} = \mathcal{H}$, and conclude that $\mu(A) = \nu(A)$ for all $A \in \mathcal{B}$.
- 2. Let (E, \mathcal{B}, μ) be a measure space, and $\overline{\mathcal{B}}^{\mu}$ be the completion of the σ -algebra \mathcal{B} with respect to the measure μ . We denote by $\overline{\mu}$ the extension of the measure μ to the σ -algebra $\overline{\mathcal{B}}^{\mu}$. Suppose $f : E \to E$ is a function such that $f^{-1}(B) \in \mathcal{B}$ and $\mu(f^{-1}(B)) = \mu(B)$ for each $B \in \mathcal{B}$, where $f^{-1}(B) = \{x \in E : f(x) \in B\}$. Show that $f^{-1}(\Gamma) \in \overline{\mathcal{B}}^{\mu}$ and $\overline{\mu}(f^{-1}(\Gamma)) = \overline{\mu}(\Gamma)$ for all $\Gamma \in \overline{\mathcal{B}}^{\mu}$.
- 3. Let (E, \mathcal{B}, μ) be a measure space, and $\{A_n\}$ a sequence in \mathcal{B} . Define

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m,$$

and

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m.$$

- (a) Prove that $\mu(\liminf_{n\to\infty} A_n) \leq \liminf_{n\to\infty} \mu(A_n)$.
- (b) Suppose that $\mu(\bigcup_{n=1}^{\infty} A_n) < \infty$. Prove that $\mu(\limsup_{n \to \infty} A_n) \ge \limsup_{n \to \infty} \mu(A_n)$.
- (c) Prove that if $\sum_{n=1}^{\infty} \mu(A_n) < \infty$, then $\mu(\limsup_{n \to \infty} A_n) = 0$. (This is known as the Borel-Cantelli Lemma).
- 4. Let $\mathcal{C} = \{(a, \infty) : a \in \mathbb{R}\}$, and let $\mathcal{B}_{\mathbb{R}}$ be the Borel σ -algebra over \mathbb{R} .
 - (a) Show that $\mathcal{B}_{\mathbb{R}} = \sigma(E; \mathcal{C}).$
 - (b) Let (E, \mathcal{F}, μ) be a **finite** measure space. Suppose $f : E \to \mathbb{R}$ satisfies $f^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{B}_{\mathbb{R}}$, where $\mathcal{B}_{\mathbb{R}}$ is the Borel σ -algebra over \mathbb{R} . Define μ_f on $\mathcal{B}_{\mathbb{R}}$ by $\mu_f(A) = \mu(f^{-1}(A))$ for all $A \in \mathcal{B}_{\mathbb{R}}$. Show that μ_f is a measure on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.