Universiteit Utrecht

Universiteit Utrecht

Measure and Integration Exercises 8

- 1. Let $\mathcal{C} = \{(a, \infty) : a \in \mathbb{R}\}$, and let $\mathcal{B}_{\mathbb{R}}$ be the Borel σ -algebra over \mathbb{R} .
 - (a) Let (E, \mathcal{B}) be a measurable space. Suppose $f : E \to \mathbb{R}$ satisfies $f^{-1}(C) \in \mathcal{B}$ for all $C \in \mathcal{C}$. Show that f is measurable, i.e. $f^{-1}(A) \in \mathcal{B}$ for all $A \in \mathcal{B}_{\mathbb{R}}$.
 - (b) Suppose ν and μ are finite measures on $\mathcal{B}_{\mathbb{R}}$, and $\mu(f^{-1}(a,\infty)) = \nu((a,\infty))$ for all $a \in \mathbb{R}$. Show that $\mu(f^{-1}(A)) = \nu(A)$ for all $A \in \mathcal{B}_{\mathbb{R}}$.
- 2. Let (E, \mathcal{B}, μ) be a measure space, and $f_n : E \to [-\infty, \infty]$ a sequence of measurable functions. Show that $\sup_n f_n$ and $\inf_n f_n$ are measurable.
- 3. Let (E, \mathcal{B}, μ) be a measure space. Suppose $f : E \to [-\infty, \infty]$ is a function such that $f = \sum_{i=1}^{n} a_i 1_{A_i}$, where a_1, \dots, a_n are **distinct** elements of $[-\infty, \infty]$ and A_1, A_2, \dots, A_n are disjoint subsets of E. Show that f is measurable (i.e. $f^{-1}(A) \in \mathcal{B}$ for all $A \in \mathcal{B}_{[-\infty,\infty]}$) if and only if $A_1, A_2, \dots, A_n \in \mathcal{B}$.
- 4. Let (E, \mathcal{B}, μ) be a measure space, and $f : E \to [0, \infty]$ a measurable simple function such that $\int_E f d\mu < \infty$. Define $\lambda : \mathcal{B} \to [0, \infty]$ by

$$\lambda(B) = \int_B f \, d\mu.$$

- (a) Show that λ is a **finite** measure on \mathcal{B} .
- (b) Suppose that $\mu(f=0) = 0$. Show that $\lambda(B) = 0$ if and only if $\mu(B) = 0$.