Boedapestlaan 6

3584 CD Utrecht

Measure and Integration Exercises 9

1. Consider the measure space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda_{\mathbb{R}})$, where $\mathcal{B}_{\mathbb{R}}$ is the Borel σ -algebra over \mathbb{R} and $\lambda_{\mathbb{R}}$ is Lebesgue measure on $\mathcal{B}_{\mathbb{R}}$. Let $f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ 2^{-k} & \text{if } x \in [k, k+1), k \ge 0. \end{cases}$$

- (a) Show that f is measurable, i.e. $f^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$ for all $B \in \mathcal{B}_{\mathbb{R}}$.
- (b) Show that $\int_{\mathbb{R}} f \, d\lambda_{\mathbb{R}} = 2$.
- 2. Let $\{f_n\}$ be a sequence in $L^1(\mu)$ such that $\int_E |f_n| d\mu = \alpha$ for all $n \geq 1$, where $\alpha \in (0, \infty)$. Let

$$A_n = \{x : |f_n(x) - \int_E f_n d\mu| \ge n^2\}.$$

Show that if $\mu(E) = 1$, then $\mu(\limsup_{n \to \infty} A_n) = 0$.

3. Let (E, \mathcal{B}, μ) be a measure space, and $f, g \in L^1(\mu)$, i.e. $\int_E |f| d\mu < \infty$ and $\int_E |g| d\mu < \infty$. Show that $\mu(f \neq g) = 0$ if and only if $\int_B f d\mu = \int_B g d\mu$ for all $B \in \mathcal{B}$.