Boedapestlaan 6

3584 CD Utrecht

Measure and Integration: Extra Exercises

- 1. Let (E, \mathcal{B}, μ) be a probability space, i.e. $\mu(E) = 1$. Let $f : E \to [0, 1)$ be a measurable function such that $\mu\left(f^{-1}([\frac{k}{2^n}, \frac{k+1}{2^n}))\right) = \frac{1}{2^n}$ for $n \ge 1$ and $k = 0, 1, \dots, 2^n 1$. Show that $\int_E f^2 d\mu = \frac{1}{3}$.
- 2. Consider the measure space $([a, b], \mathcal{B}, \lambda)$, where \mathcal{B} is the Borel σ -algebra on [a, b], and λ is the restriction of the Lebesgue measure on [a, b]. Let $f : [a, b] \to \mathbb{R}$ be a bounded Riemann integrable function. Show that the Riemann integral of f on [a, b] is equal to the Lebesgue integral of f on [a, b], i.e.

$$(R) \int_{a}^{b} f(x)dx = \int_{[a,b]} fd\lambda.$$

- 3. Let 0 < a < b. Prove with the help of Fubini's theorem that $\int_0^\infty (e^{-at} e^{-bt}) \frac{1}{t} dt = \log(b/a)$.
- 4. Let (E, \mathcal{B}, μ) be a measure space. Show that μ is σ -finite **if and only if** there exists a **strictly** positive measurable function $f \in L^1(\mu)$.