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Measure and Integration: Extra Exercises

1. Let (E, B, 1) be a probability space, i.e. u(E)=1. Let f: E — [0,1) be a measur-
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Show that [, f?du = 3
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Proof Let A, = f_l([2—n, ;n ), forn>1and k=0,1,---,2" — 1. For n > 1,
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let g, = Z El Ay Then, g, is a sequence of non-negative measurable functions
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such that g, T f2. Furthermore,
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By the Monotone Convergence Theorem,
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2. Consider the measure space ([a,b], B, A), where B is the Borel o-algebra on [a, b,
and) is the restriction of the Lebesgue measure on [a,b]. Let f : [a,b] — R be
a bounded Riemann integrable function. Show that the Riemann integral of f on
[a, b] is equal to the Lebesgue integral of f on [a, ], i.e.
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Proof For each n > 1, divide the interval [a,b] into 2™ intervals of equal length
Ién), I{n), cee 12(211, where

1 = {aJrj(b—a) - (j+1)(b—a)}_
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Let c™W = (1™ . 0 < j < 2" — 1.}. Notice that C*1) ig a refinement of C™,
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where U, L denote the upper and lower Riemann sums respectively. For each n > 1
and 0 <5 <2" —1, let

M™ = sup f(x),and mg»n) = inf f(z).
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Define for n > 1,
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Since {g,} is a bounded increasing sequence, and {f,} is a bounded decreasing
sequence, there exist measurable functions F' and G such that

G = lim g, and F = lim f,.
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Furthermore, g1 < G < f < F < f; and hence

/ Gd\ = fd)\:/ Fd.
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By the Lebesgue Dominated Convergence Theorem,
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. Let 0 < a < b. Prove with the help of Fubini’s theorem that [™(e™* — e‘bt)gdt =
log(b/a).

Thus,



Proof Let f : [a,b] x [0,00) be given by f(x,y) = e *. Then f is continuous
(hence measurable) and f > 0. By Toneli’s theorem
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. Let (E, B, ) be a measure space. Show that p is o-finite if and only if there exists
a strictly positive measurable function f € L'(u).

But,
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The result thus follows.

Proof Suppose p is o-finite. Then E = U E,, where {E,} is a family of mea-
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surable pairwise disjoint sets such that p(F,) < oo for all n. Define f : E — R by
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f(z) = Z ml g, Then f is a strictly positive measurable function. Further-
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Thus f € L' (u).

Conversely, suppose there exists a strictly positive measurable function f € L'(u).

more,

Let F,, = {f > —}. Then, {F,} is an increasing sequence of measurable sets such
n

that £ = U F,,, and by Markov inequality u(F,) <n [ fdu < oo. Set E; = F; and
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E, = F,\ F,,_1, then E, are pairwise disjoint, £ = U E, and u(E,) < u(F,) < oc.
n=1

Thus, p is o-finite.



