Mathematisch Instituut

Budapestlaan 6

3584 CD Utrecht

Measure and Integration 2006-Selected Solutions 13

1. (Exercise 13.4, p.131) Denote by λ Lebesgue measure on (0,1). Show that the following iterated integrals exist, but yield different values:

$$\int_{(0,1)} \int_{(0,1)} \frac{x^2 - y^2}{(x^2 + y^2)^2} d\lambda(x) d\lambda(y) \neq \int_{(0,1)} \int_{(0,1)} \frac{x^2 - y^2}{(x^2 + y^2)^2} d\lambda(y) d\lambda(x).$$

What does this tell about the $(\lambda \times \lambda)$ -integral of the function $\frac{x^2-y^2}{(x^2+y^2)^2}$?

Proof: Notice that for each fixed $y \in (0,1)$, the function $x \to \frac{x^2 - y^2}{(x^2 + y^2)^2}$ is continuous, and is Riemann integrable on [0,1] since

$$\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx = -\frac{x}{(x^2 + y^2)} \Big|_0^1 = -\frac{1}{1 + y^2}.$$

Furthermore, the function $y \to -\frac{1}{1+y^2}$ is continuous and Riemann integrable on [0,1] since

$$\int_0^1 -\frac{1}{1+y^2} dy = -\tan y|_0^1 = -\frac{\pi}{4}.$$

Thus,

$$\int_{(0,1)} \int_{(0,1)} \frac{x^2 - y^2}{(x^2 + y^2)^2} d\lambda(x) d\lambda(y) = \int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx dy = -\frac{\pi}{4}.$$

Similar analysis shows that

$$\int_{(0,1)} \int_{(0,1)} \frac{x^2 - y^2}{(x^2 + y^2)^2} d\lambda(y) d\lambda(x) = \int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dy dx = \frac{\pi}{4}.$$

Thus the two iterated integrals are not equal. This implies that the function $(x,y) \to \frac{x^2-y^2}{(x^2+y^2)^2}$ is not (Lebesgue) $\lambda \times \lambda$ integrable on $(0,1)\times(0,1)$, otherwise the two integrals would be equal. In fact,

$$\int_{0}^{1} \int_{0}^{1} \left| \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} \right| dy dx \ge \int_{0}^{1} \int_{0}^{x} \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} dy dx
= \int_{0}^{1} \frac{1}{2x} = \infty.$$

2. (Exercise 13.7, p.131) Consider ([0,1], \mathcal{B} , λ), where \mathcal{B} is the Borel σ -algebra on [0,1], λ is Lebesgue measure and μ is counting measure (i.e. $\mu(A)$ = number of elements in A). Let $\Delta = \{x, y\} \in [0, 1] \times [0, 1] : x = y\}$, show that

$$\int_{[0,1]} \int_{[0,1]} 1_{\Delta}(x,y) d\lambda(x) d\mu(y) \neq \int_{[0,1]} \int_{[0,1]} 1_{\Delta}(x,y) d\mu(y) d\lambda(x).$$

Why does not this violate Tonelli's Theorem?

Proof For any $x, y \in [0, 1]$, $\Delta_x = \{y \in [0, 1] : (x, y) \in \Delta\} = \{x\}$, and $\Delta_y = \{x \in [0, 1] : (x, y) \in \Delta\} = \{y\}$. Thus, $\mu(\Delta_x) = \mu(\Delta_y) = 1$ and $\lambda(\Delta_x) = \lambda(\Delta_y) = 0$. Furthermore,

$$1_{\Delta}(x,y) = 1 \Leftrightarrow 1_{\Delta_x}(y) = 1 \Leftrightarrow 1_{\Delta_y}(x) = 1.$$

Hence,

$$\int_{[0,1]} \int_{[0,1]} 1_{\Delta}(x,y) d\lambda(x) d\mu(y) = \int_{[0,1]} \lambda(\Delta(y)) d\mu(y) = 0,$$

and

$$\int_{[0,1]} \int_{[0,1]} 1_{\Delta}(x,y) d\mu(y) d\lambda(x) = \int_{[0,1]} \mu(\Delta(x)) d\lambda(x) = \lambda([0,1]) = 1.$$

The reason why Tonelli's Theorem does not hold is because the measure μ is **not** σ -finite.