Mathematisch Instituut

3584 CD Utrecht

Measure and Integration: Mid-Term Exam April 19, 2005

1. Let $f, g : [a, b] \to \mathbb{R}$ be bounded Riemann integrable functions. Show that fg is Riemann integrable. (Hint: express fg in terms of (f + g) and (f - g)).

Proof: First notice that f and g are Riemann integrable funcions, hence f + g and f - g are also Riemann integrable funcions. By problem 4 Exercises2, it follows that $(f + g)^2$ and $(f - g)^2$ are Riemann integrable funcions. Now,

$$fg = \frac{1}{4}(f+g)^2 - \frac{1}{4}(f-g)^2.$$

Hence fg is Riemann integrable since it is the difference of two Riemann integrable funcions.

2. Consider the measure space $(\mathbb{R}, \overline{\mathcal{B}}_{\mathbb{R}}, \lambda)$, where $\overline{\mathcal{B}}_{\mathbb{R}}$ is the Lebesgue σ -algebra over \mathbb{R} , and λ is Lebesgue measure. Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by

$$f_n(x) = \sum_{k=0}^{2^n - 1} \frac{k}{2^n} \cdot 1_{[k/2^n, (k+1)/2^n)}, \ n \ge 1.$$

- (a) Show that f_n is measurable, and $f_n(x) \leq f_{n+1}(x)$ for all $x \in X$.
- (b) Let $f(x) = \lim_{n \to \infty} f_n(x)$, for $x \in \mathbb{R}$. Show that $f: \mathbb{R} \to \mathbb{R}$ is measurable.
- (c) Show that $\lim_{n\to\infty} \int_{\mathbb{R}} f_n(x) d\lambda(x) = \frac{1}{2}$.

Proof (a): Since for each $n \ge 1$ and $k \le 2^n - 1$ the set $[k/2^n, (k+1)/2^n)$ is Lebesgue measurable, it follows from problem 3 Exercises 8 that f_n is measurable. Now let $x \in \mathbb{R}$. If $x \ge 1$ or x < 0, then $f_n(x) = f_{n+1}(x) = 0$. Suppose $x \in [0,1)$, then there exists a $k \le 2^n - 1$ such that $k/2^n \le x < (k+1)/2^n$ and hence $f_n(x) = k/2^n$. To determine $f_{n+1}(x)$ we divide the interval $[k/2^n, (k+1)/2^n)$ into two equal parts $[2k/2^{n+1}, (2k+1)/2^{n+1})$ and $[(2k+1)/2^{n+1}, (2k+2)/2^{n+1})$. If $x \in [2k/2^{n+1}, (2k+1)/2^{n+1})$, then $f_{n+1}(x) = 2k/2^{n+1} = k/2^n = f_n(x)$. If $x \in [(2k+1)/2^{n+1}, (2k+2)/2^{n+1})$, then $f_{n+1}(x) = (2k+1)/2^{n+1} > f_n(x)$. In all cases we see that $f_n(x) < f_{n+1}(x)$.

Proof (b): Since for each $x \in \mathbb{R}$, $(f_n(x))$ is an increasing sequence, it follows that $f(x) = \lim_{n \to \infty} f_n(x) = \sup_n f_n(x)$. By problem 2 Exercises 8 and part (a), we see that f is measurable.

Proof (c): Each f_n is a measurable simple function, hence

$$\int_{\mathbb{R}} f_n(x)d\lambda(x) = \sum_{k=0}^{2^n - 1} \frac{k}{2^n} \lambda([k/2^n, (k+1)/2^n)) = \frac{1}{4^n} \sum_{k=0}^{2^n - 1} k = \frac{(2^n - 1)2^n}{2 \cdot 4^n}.$$

Thus,

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) d\lambda(x) = \lim_{n \to \infty} \frac{(2^n - 1)2^n}{2 \cdot 4^n} = \frac{1}{2}.$$

- 3. Let $M \subset \mathbb{R}$ be a non-Lebesgue measurable set (i.e. $M \notin \overline{\mathcal{B}}_{\mathbb{R}}$.). Define $A = \{(x, x) \in \mathbb{R}^2 : x \in M\}$, and let $g : \mathbb{R} \to \mathbb{R}^2$ be given by g(x) = (x, x).
 - (a) Show that $A \in \overline{\mathcal{B}}_{\mathbb{R}^2}$. i.e. A is Lebesgue measurable. (Hint: use the fact that Lebesgue measure is rotation invariant).
 - (b) Show that g is a Borel-measurable function, i.e. $g^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$ for each $B \in \mathcal{B}_{\mathbb{R}^2}$.
 - (c) Show that $A \notin \mathcal{B}_{\mathbb{R}^2}$, i.e. A is not Borel measurable.

Proof (a): Notice that A is a subset of the diagonal line $L = \{(x, y) : y = x\}$. So L is obtained from the x-axis (i.e. \mathbb{R}) by rotating through an angle of $\pi/4$. Since Lebesgue measure is rotation invariant, and the Lebesgue measure of \mathbb{R} (as a subset of \mathbb{R}^2) is zero, it follows that $|A|_e \leq |L|_e = 0$. Thus, A is Lebesgue measurable, i.e. $A \in \overline{\mathcal{B}}_{\mathbb{R}^2}$.

Proof (b): It is easy to see that the map g is continuous, and hence by Lemma 3.2.1 g is Borel-measurable, i.e. $g^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$ for each $B \in \mathcal{B}_{\mathbb{R}^2}$.

Proof (c): If $A \in \mathcal{B}_{\mathbb{R}^2}$, then by part (b) we would have that $M = g^{-1}(A) \in \mathcal{B}_{\mathbb{R}} \subset \overline{\mathcal{B}}_{\mathbb{R}}$, which is a contradiction.

- 4. Let $\mathcal{M} = \{E \subseteq \mathbb{R} : |A|_e = |A \cap E|_e + |A \cap E^c|_e \text{ for all } A \subseteq \mathbb{R}\}$, where $|A|_e$ denotes the outer Lebesgue measure of A.
 - (a) Show that \mathcal{M} is an algebra over \mathbb{R} . (Hint: $A \cap (E_1 \cup E_2) = (A \cap E_1) \bigcup (A \cap E_2 \cap E_1^c)$).
 - (b) Prove by induction that if $E_1, \dots, E_n \in \mathcal{M}$ are pairwise disjoint, then for any $A \subseteq \mathbb{R}$

$$|A \cap (\bigcup_{i=1}^{n} E_i)|_e = \sum_{i=1}^{n} |A \cap E_i|_e.$$

- (c) Show that if $E_1, E_2, \dots \in \mathcal{M}$ is a countable collection of disjoint elements of \mathcal{M} , then $\bigcup_{i=1}^{\infty} E_i \in \mathcal{M}$.
- (d) Show that \mathcal{M} is a σ -algebra over \mathbb{R} .
- (e) Let $\mathcal{C} = \{(a, \infty) : a \in \mathbb{R}\}$. Show that $\mathcal{C} \subseteq \mathcal{M}$. Conclude that $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}$, where $\mathcal{B}_{\mathbb{R}}$ denotes the Borel σ -algebra over \mathbb{R} .

Proof (a): It is clear from the definition of \mathcal{M} that $\mathbb{R} \in \mathcal{M}$, and if $E \in \mathcal{M}$ then $E^c \in \mathcal{M}$, i.e. \mathcal{M} is closed under complements. We show that \mathcal{M} is closed under finite unions. Let $E_1, E_2 \in \mathcal{M}$, and A any subset of \mathbb{R} . We need to show that $|A|_e = |A \cap (E_1 \cup E_2)|_e + |A \cap (E_1 \cup E_2)^c|_e$. Since outer Lebesgue measure is

subadditive, it follows that $|A|_e \leq |A \cap (E_1 \cup E_2)|_e + |A \cap (E_1 \cup E_2)^c|_e$. We now prove the other inequality.

$$|A \cap (E_1 \cup E_2)|_e + |A \cap (E_1 \cup E_2)^c|_e \leq |A \cap E_1|_e + |A \cap E_1^c \cap E_2|_e + |A \cap E_1^c \cap E_2^c|_e$$

$$= |A \cap E_1|_e + |A \cap E_1^c|_e$$

$$= |A|_e.$$

The first inequality follows from the hint and the subadditivity of the outer Lebesgue measure, the first equality follows from the fact that $E_2 \in \mathcal{M}$ and the second equality follows from the fact that $E_1 \in \mathcal{M}$.

Proof (b): The equality is trivial for n = 1. Suppose it is true for i < n, then

$$|A \cap (\bigcup_{j=1}^{i+1} E_j)|_e = |A \cap (\bigcup_{j=1}^{i+1} E_j) \cap E_{i+1}|_e + |A \cap (\bigcup_{j=1}^{i+1} E_j) \cap E_{i+1}^c|_e$$

$$= |A \cap E_{i+1}|_e + |A \cap (\bigcup_{j=1}^{i} E_j)|_e$$

$$= |A \cap E_{i+1}|_e + \sum_{j=1}^{i} |A \cap E_j|_e$$

$$= \sum_{j=1}^{i+1} |A \cap E_j|_e.$$

The first equality follows from $E_{i+1} \in \mathcal{M}$, the second from the fact that E_1, E_2, \dots, E_{i+1} are pairwise disjoint and the third follows from our induction hypothesis.

Proof (c): Let $E = \bigcup_{i=1}^{\infty} E_i$, by subadditivity of the outer Lebesgue measure we only need to show that $|A \cap E|_e + |A \cap E^c|_e \le |A|_e$ for any $A \subseteq \mathbb{R}$. Let $F_n = \bigcup_{i=1}^n E_i$, then by part (a) $F_n \in \mathcal{M}$. By part (b) and monotonicity of the outer Lebesgue measure, we have

$$|A|_e = |A \cap F_n|_e + |A \cap F_n^c|_e \ge \sum_{i=1}^n |A \cap E_i|_e + |A \cap E^c|_e.$$

Taking the limit as $n \to \infty$, we get by σ -subadditivity of the outer Lebesgue measure that

$$|A|_e \ge \sum_{i=1}^{\infty} |A \cap E_i|_e + |A \cap E^c|_e \ge |A \cap E|_e + |A \cap E^c|_e.$$

Proof (d): Let $F_1, F_2, \dots \in \mathcal{M}$. Define $E_1 = F_1$ and $E_n = F_n \setminus \bigcup_{j=1}^{n-1} E_j$, $n \geq 2$. Then, $E_n \in \mathcal{M}$ (since \mathcal{M} is an algebra) are pairwise disjoint, and $\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} F_i \in \mathcal{M}$ (by part (c)). Hence, \mathcal{M} is a σ -algebra over \mathbb{R} .

Proof (e): Let $(a, \infty) \in \mathcal{C}$ and $A \subseteq \mathbb{R}$. We need to show that $|A|_e \geq |A \cap (a, \infty)|_e + |A \cap (-\infty, a]|_e$. If $|A|_e = \infty$, then the inequality is trivially true. Suppose that $|A|_e < \infty$ and let $\epsilon > 0$. There exists a countable collection of closed intervals

 $[a_n,b_n]$ such that $A\subset\bigcup_{n=1}^\infty[a_n,b_n]$ and $\sum_{n=1}^\infty(b_n-a_n)\leq |A|_e+\epsilon$ (this follows from the definition of the outer Lebesgue measure). Let $I_n=[a_n,b_n]\cap(a,\infty)$ and $I'_n=[a_n,b_n]\cap(-\infty,a]$. Notice that I_n and I'_n are disjoint and $[a_n,b_n]=I_n\cup I'_n$. Now, $|A\cap(a,\infty)|_e\leq |\bigcup_{n=1}^\infty I_n|_e\leq \sum_{n=1}^\infty |I_n|_e$, and $|A\cap(-\infty,a]|_e\leq \sum_{n=1}^\infty |I'_n|_e$. Hence,

$$|A \cap (a, \infty)|_e + |A \cap (-\infty, a]|_e \le \sum_{n=1}^{\infty} (|I_n|_e + |I'_n|_e) = \sum_{n=1}^{\infty} (b_n - a_n) \le |A|_e + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, it follows that $|A|_e \ge |A \cap (a, \infty)|_e + |A \cap (-\infty, a]|_e$. This shows that $\mathcal{C} \subseteq \mathcal{M}$. Since $\mathcal{B}_{\mathbb{R}}$ is the smallest σ -algebra generated by \mathcal{C} , it follows that $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}$.