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(1) Consider the measure space (R,B(R), λ), where B(R) is the Borel σ-algebra, and λ Lebesgue
measure.
(a) Let f ∈ L1(λ). Show that for all a ∈ R, one has∫

R
f(x− a)dλ(x) =

∫
R

f(x)dλ(x).

(b) Let k, g ∈ L1(λ). Define F : R2 → R, and h : R → R by

F (x, y) = k(x− y)g(y) and h(x) =
∫

R
F (x, y)dλ(y).

(i) Show that F is measurable.
(ii) Show that∫

R
|h(x)|dλ(x) ≤

(∫
R
|k(x)|dλ(x)

) (∫
R
|g(y)|dλ(y)

)
.

and λ(|h| = ∞) = 0.

Proof(a): We apply the standard argument. Suppose first that f = 1A, where A ∈ B(R). By
translation invariance of Lebesgue measure, we have for any a ∈ R∫

1A(x) dλ(x) = λ(A) = λ(A) = λ(A + a) =
∫

1A+a(x) dλ(x) =
∫

1A(x− a) dλ(x).

Hence the result is true for indicator functions (we do not even need that λ(A) < ∞). Suppose
now that f ∈ E+, and let f =

∑n
i=0 ai1Ai

be a standard representation. Then∫
f(x) dλ(x) =

n∑
i=0

ai

∫
1Ai

(x) dλ(x) =
n∑

i=0

ai

∫
1Ai

(x− a) dλ(x) =
∫

f(x− a) dλ(x).

Now let f be any non-negative measurable function. Then, there exists an increasing sequence
(gn) ∈ E+ converging (pointwise) to f . By Beppo-Levi, we have∫

f(x) dλ(x) = lim
n→∞

∫
gn(x) dλ(x) = lim

n→∞

∫
gn(x− a) dλ(x) =

∫
f(x− a) dλ(x).

Finally, suppose f ∈ L1(λ). Write f = f+ − f−. Since f+, f− ≥ 0, then∫
f(x) dλ(x) =

∫
f+(x) dλ(x)−

∫
f−(x) dλ(x)

=
∫

f+(x− a) dλ(x)−
∫

f−(x− a) dλ(x) =
∫

f(x− a) dλ(x).

(Note that only in the last part is the integrability of f needed).

Proof(b)(i): To show measurablity of F , we first extend the domain of g to R2 as follows.
Define g : R2 → R by g(x, y) = g(y). It is easy to see that g is B(R2)/B(R) measurable. Moreover,
the function d : R2 → R given by d(x, y) = x − y is continuous hence B(R2)/B(R) measurable.
Since

F (x, y) = k(x− y)g(y) = k ◦ d(x, y)g(x, y)

is the product of two B(R2)/B(R) measurable functions, it follows that F is B(R2)/B(R) mea-
surable.
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Proof(b)(ii): By part (a), we have∫ ∫
|F (x, y)| dλ(x)dλ)(y) =

∫ ∫
|k(x− y)||g(y)| dλ(x)dλ)(y)

=
∫ ∫

|k(x)||g(y)| dλ(x)dλ)(y)

=
∫
|k(x)| dλ(x)

∫
|g(y)|dλ)(y) < ∞.

By Fubini’s Theorem, this implies that F is λ× λ integrable, and∫
|h(x)| dλ(x) =

∫
|
∫

F (x, y) dλ(y)| dλ(x)

≤
∫ ∫

|F (x, y)| dλ(y) dλ(x)

=
∫ ∫

|F (x, y)| dλ(x)dλ)(y)

=
∫
|k(x)| dλ(x)

∫
|g(y)|dλ)(y) < ∞.

Since
∫
|h(x)| dλ(x) < ∞, it follows that λ(|h| = ∞) = 0.

(2) Consider the measure space ((0,∞),B((0,∞), λ), where B((0,∞)) and λ are the restrictions of
the Borel σ-algebra and Lebesgue measure to the interval (0,∞). Show that

lim
n→∞

∫
(0,n)

(
1 +

x

n

)n

e−2x dλ(x) = 1.

Proof: Let un(x) = 1(0,n)

(
1 + x

n

)n
e−2x, then limn→∞ un(x) = 1(0,∞)e

−x. Using the fact
that 1+x ≤ ex, we see that un(x) ≤ 1(0,∞)e

−x. Since the function e−x is Riemann integrable on
[0,∞), it follows that it is Lebesgue integrable on [0,∞) (and hence also on (0,∞)). By Lebesgue
Dominated Convergence Theorem (or the Monotone Convergence Theorem), we have

lim
n→∞

∫
(0,n)

(
1 +

x

n

)n

e−2x dλ(x) = lim
n→∞

∫
un(x)dλ(x)

=
∫

1(0,∞)e
−xdλ(x) =

∫ ∞

0

e−x dx = 1.

(3) Let (X,A, µ) be a probability space (i.e. µ(X) = 1).
(a) Suppose 1 ≤ p < r, and fn, f ∈ Lr(µ) satisfy lim

n→∞
||fn − f ||r = 0. Show that lim

n→∞
||fn −

f ||p = 0.
(b) Assume p, q > 1 satisfy 1/p + 1/q = 1. Suppose fn, f ∈ Lp(µ), and gn, g ∈ Lq(µ) satisfy

lim
n→∞

||fn − f ||p = lim
n→∞

||gn − g||q = 0.

Show that lim
n→∞

||fngn − fg||1 = 0.

Proof(a): Since µ(X) = 1, by problem 12.1, we have

0 ≤ lim
n→∞

||fn − f ||p ≤ lim
n→∞

||fn − f ||r = 0.

Thus, lim
n→∞

||fn − f ||p = 0.

Proof(b): First notice that by the triangle inequality for || ||p, we have

lim
n→∞

| ||fn||p − ||f ||p | ≤ lim
n→∞

||fn − f ||p = 0.

Thus, limn→∞ ||fn||p = ||f ||p. By Holder’s inequality we have,

||fngn − fg||1 =
∫
|fngn − fg| dµ

≤
∫
|fn| |gn − g| dµ +

∫
|g| |fn − f | dµ

≤ ||fn||p||gn − g||q + ||g||q||fn − f ||p.
Taking limits, we get the desired result.
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(4) Let 0 < a < b. Prove with the help of Tonelli’s theorem (applied to the function f(x, y) = e−xt)

that
∫
[0,∞)

(e−at − e−bt)
1
t
dλ(t) = log(b/a), where λ denotes Lebesgue measure.

Proof Let f : [a, b] × [0,∞) be given by f(x, y) = e−xt. Then f is continuous (hence
measurable) and f > 0. By Toneli’s theorem∫

[0,∞)

∫
[a,b]

e−xtdλ(x) dλ(t) =
∫

[a,b]

∫
[0,∞)

e−xtdλ(t) dλ(x).

For each fixed x ∈ [a, b], the function t → e−xt is Riemann integrable on [0,∞), so that∫
[0,∞)

e−xtdλ(t) =
∫ ∞

0

e−xtdt =
1
x

.

Furthermore, the function x → 1
x

is Riemann integrable on [a, b], thus∫
[a,b]

∫
[0,∞)

e−xtdλ(t) dλ(x) =
∫

[a,b]

1
x

dλ(x) =
∫ b

a

1
x

dx = log(b/a).

On the other hand,∫
[0,∞)

∫
[a,b]

e−xtdλ(x) dλ(t) =
∫

[0,∞)

∫ b

a

e−xtdx dλ(t) =
∫

[0,∞)

(e−at − e−bt)
1
t
dλ(t).

Therefore,
∫
[0,∞)

(e−at − e−bt)
1
t
dλ(t) = log(b/a).

(5) Let (E,B, ν) be a measure space, and h : E → R a non-negative measurable function. Define a
measure µ on (E,B) by µ(A) =

∫
A

hdν for A ∈ B. Show that for every non-negative measurable
function F : E → R one has ∫

E

F dµ =
∫

E

Fh dν.

Conclude that the result is still true for F ∈ L1(µ) which is not necessarily non-negative.

Proof Suppose first that F = 1A is the indicator function of some measurable set A ∈ B.
Then, ∫

E

F dµ = µ(A) =
∫

A

h dν =
∫

E

1Ahdν =
∫

E

Fhdν.

Suppose now that F =
n∑

k=1

αk1Ak
is a non-negative measurable step function. Then,

∫
E

F dµ =
n∑

k=1

αkµ(Ak) =
n∑

k=1

αk

∫
E

1Ahdν =
∫

E

n∑
k=1

αk1Ahdν =
∫

E

Fhdν.

Suppose that F is a non-negative measurable function, then there exists a sequence of non-
negative measurable step functions Fn such that Fn ↑ F. Then, Fnh ↑ Fh, and by Beppo-Levi,∫

E

F dµ = lim
n→∞

∫
E

Fn dµ = lim
n→∞

∫
E

Fnhdν =
∫

E

Fhdν.

Finally, suppose that F ∈ L1(µ). Since F+, F− are non-negative, we have∫
E

F+ dµ =
∫

E

F+h dν and
∫

E

F− dµ =
∫

E

F−h dν.

Since F ∈ L1(µ), from the above we see that Fh ∈ L1(ν), hence∫
E

F dµ =
∫

E

F+ dµ−
∫

E

F− dµ =
∫

E

F+h dν −
∫

E

F−h dν =
∫

E

Fh dν.

(6) Let (X,A, µ1) and (Y,B, ν1) be σ-finite measure spaces. Suppose f ∈ L1(µ1) and g ∈ L1(ν1) are
non-negative. Define measures µ2 on A and ν2 on B by

µ2(A) =
∫

A

f dµ1 and ν2(B) =
∫

B

g dν1,

for A ∈ A and B ∈ B.
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(a) For D ∈ A⊗ B and y ∈ Y , let Dy = {x ∈ X : (x, y) ∈ D}. Show that if µ1(Dy) = 0 ν1 a.e.,
then µ2(Dy) = 0 ν2 a.e.

(b) Show that if D ∈ A⊗ B is such that (µ1 × ν1)(D) = 0 then (µ2 × ν2)(D) = 0.
(c) Show that for every D ∈ A⊗ B one has

(µ2 × ν2)(D) =
∫

D

f(x)g(y) d(µ1 × ν1)(x, y).

Proof(a) Suppose µ1(Dy) = 0 ν1 a.e. Let B = {y ∈ Y : µ1(Dy) > 0}, and C = {y ∈ Y :
µ2(Dy) > 0}. By our assumption, ν1(B) = 0. By Theorem 10.9(ii), for any y ∈ Y \ B one has
µ2(Dy) = 0. Thus, C ⊂ B, so that ν1(C) = 0. Applying Theorem 10.9(ii) again, we see that
ν2(C) = 0. Thus, µ2(Dy) = 0 ν2 a.e.

Proof(b) Suppose that D ∈ A⊗ B is such that (µ1 × ν1)(D) = 0. Then,∫
µ1(Dy) dν1(y) = (µ1 × ν1)(D) = 0.

By Theorem 10.9(i), we have that µ1(Dy) = 0 ν1 a.e. By part (a) above this implies that
µ2(Dy) = 0 ν2 a.e. Thus, by Theorem 10.9(i)

(µ2 × ν2)(D) =
∫

µ2(Dy) dν2(y) = 0.

Proof(c) By Tonelli’s Theorem, and problem 5, we have

(µ2 × ν2)(D) =
∫

Y

∫
X

1Dy
(x) dµ2(x) dν2(y)

=
∫

Y

(∫
X

1Dy
(x)f(x) dµ1(x)

)
dν2(y)

=
∫

Y

(∫
X

1Dy (x)f(x) dµ1(x)
)

g(y) dν1(y)

=
∫

Y

∫
X

1D(x, y)f(x)g(y) dµ1(x) dν1(y)

=
∫

X×Y

1D(x, y)f(x)g(y) d(µ1 × ν1)(x, y)

=
∫

D

f(x)g(y) d(µ1 × ν1)(x, y).


