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(1) Consider the measure space (R,B(R),\), where B(R) is the Borel o-algebra, and A Lebesgue
measure.
(a) Let f € £Y(\). Show that for all a € R, one has

/fa:—ad/\ /f YA (z

(b) Let k,g € £1()\). Define F: R? - R, and h: R — R by
F(z,y) = k(z —y)g(y) and h(x /nyd)\

(i) Show that F'is measurable.
(ii) Show that

/|h Az (/|k JdA(z )(/|g Ay )

and A(|h| = 00) = 0.

Proof(a): We apply the standard argument. Suppose first that f = 14, where A € B(R). By
translation invariance of Lebesgue measure, we have for any ¢ € R

/ 1a(z) d\(z) = A(A) = A(A) = A\(A + a) = / Lasa(z) dA(z) = / 14(z — a) d\(z).

Hence the result is true for indicator functions (we do not even need that A(A) < 00). Suppose
now that f € £, and let f = >""" ja;14, be a standard representation. Then

/f ) d\(x Zal/u ) dA(z Zaz/u (z —a) d\(z /fx—ad/\

Now let f be any non-negative measurable function. Then, there exists an increasing sequence
(gn) € ET converging (pointwise) to f. By Beppo-Levi, we have

/f d\(z) = lim [ g,(x)d\(z) = lim [ g.(z —a)d\(z /fa:—a d\(z

n—oo n—oo

Finally, suppose f € £LY(\). Write f = f* — f~. Since fT, f~ > 0, then

[t@aw@ = [rr@ae- e
/f"’x—a d\(z /f x —a)d\(z /fm—a ) dA\(x

(Note that only in the last part is the integrability of f needed).

Proof(b)(i): To show measurablity of F', we first extend the domain of g to R? as follows.
Define g : R? — R by g(z,y) = g(y). It is easy to see that g is B(R?)/B(R) measurable. Moreover,
the function d : R? — R given by d(z,y) = x — y is continuous hence B(R?)/B(R) measurable.
Since

F(x,y) = k(z —y)g(y) = ko d(x,y)g(x,y)

is the product of two B(R?)/B(R) measurable functions, it follows that F' is B(R?)/B(R) mea-
surable.
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Proof(b)(ii): By part (a), we have

[ [ F@upia@ane = [ [ ke - lsw) @i
= [ [ k@l ax@an)
- /|k(m)|dA(x)/|g(y)|dA)(y) <o

By Fubini’s Theorem, this implies that F' is A x A integrable, and

[m@lare = [1 [ Fayaw)ae

[ [ @i dre)
[ [ @@
- /|k ) dA(z /|g )|\ (y

Since [ |h(z)|d\(z) < oo, it follows that A(|h| =
Consider the measure space ((0,00), B((0, 00), )\), where B((0,00)) and A are the restrictions of
the Borel o-algebra and Lebesgue measure to the interval (0,00). Show that

n
lim (1 + E) e d\(z) =1
o0 J(om) n

IN

Proof: Let u,(z) = 1) (1 + %)ne*%, then limy, oo un(2) = 1,0y~ ". Using the fact
that 142 < e, we see that u,(z) < 1(g,)e™". Since the function e~ is Riemann integrable on
[0, 00), it follows that it is Lebesgue integrable on [0, 00) (and hence also on (0,00)). By Lebesgue
Dominated Convergence Theorem (or the Monotone Convergence Theorem), we have

n—oo n—oo

= /1(0700)67Id/\($) :A e Pdx=1.

Let (X, A, i) be a probability space (i.e. u(X)=1).
(a) Suppose 1 < p < r, and f,,f € L"(u) satisty lim ||f, — f||» = 0. Show that lim ||f, —

fllp =0.
(b) Assume p,q > 1 satisfy 1/p+ 1/q = 1. Suppose fn, f € LP(u), and g¢,,, g € LI(p) satisfy

lim (1 + E>n e 2 d\z) = lim [ u,(2z)d\(z)
(0,m) n

Tim | f = fllp = lim [|gn — gllg = 0.
Show that nlLIEO || frngn — fglli = 0.
Proof(a): Since u(X) =1, by problem 12.1, we have
0< lim |[fn = fllp < lim [[fn = fll» =0
Thus, lim || f, = f[l, = 0.
Proof(b): First notice that by the triangle inequality for || ||,, we have
Jim [ [ fallp = [[fllp| < lim || fn = fll, = 0.

Thus, lim,,—. || fullp = ||fl|p- By Holder’s inequality we have,
fugn — Foll = /|fngn ~ foldu
< /|fn||gn—g|du+/|g|Ifn—fldu

fnllpllgn = glla + llgllallfn = fllp-

Taking limits, we get the desired result.
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Let 0 < a < b. Prove with the help of Tonelli’s theorem (applied to the function f(z,y) = e~ %)
1
that f[o OO)(e"“ - e*bt)gd)\(t) = log(b/a), where A denotes Lebesgue measure.

Proof Let f : [a,b] x [0,00) be given by f(x,y) = e ®'. Then f is continuous (hence
measurable) and f > 0. By Toneli’s theorem

/ / NG / / e~ N(E) dA(2).
0,00) J[a,b] a,b] J[0,00)

—xt

For each fixed x € [a, ], the function ¢t — e~*" is Riemann integrable on [0, 00), so that

o 1
/ e tdN(t) = / e tdt = —.
[0,00) 0 €

1
Furthermore, the function £ — — is Riemann integrable on [a, b], thus
x

b
/ / e N(E) dA () = / L ina) = / L i = tog(b/a).
[a,b] /[0,00) [a,b] T a T

On the other hand,

1
/ / "”tdA ) dA(t / / e "tdx dA(t / (e‘”t — e‘bt)fd)\(t).
[0,00) /[a,b] [0,00) [0,00) ¢

Therefore, f[o N G e_bt)gd)\(t) =log(b/a).

Let (E,B,v) be a measure space, and h : E — R a non-negative measurable function. Define a
measure 4 on (E,B) by u(A) = [, hdv for A € B. Show that for every non-negative measurable

function F': E — R one has
/qu:/ Fhdv.
E E

Conclude that the result is still true for F € £(u) which is not necessarily non-negative.

Proof Suppose first that F' = 14 is the indicator function of some measurable set A € B5.

Then,
/Fd,u:u(A):/hdl/:/lAth:/thu.
E A E E

n
Suppose now that F = Z arla, is a non-negative measurable step function. Then,
k=1

/Fd,u:Zaku(Ak):Zak/ 1Ahdu:/ ZaklAhdl/:/ Fhdv.
E k=1 k=1 E E k=1 E

Suppose that F' is a non-negative measurable function, then there exists a sequence of non-
negative measurable step functions Fj, such that F,, T F. Then, F,,h T Fh, and by Beppo-Levi,

n—oo

/ Fdp= lim F,du = lim F,hdv = / Fhdv.
E n—JE E E
Finally, suppose that F' € £(u). Since F't, F~ are non-negative, we have

/F+du:/F+th and /F_du:/F_hdI/.
E E E

Since F' € £!(u1), from the above we see that F'h € £!(v), hence

/Fd,u /F+du—/F7du:/F+hdu—/F7hdl/:/thu.
E E E E E

Let (X, A, u1) and (Y, B,v1) be o-finite measure spaces. Suppose f € £L!(u1) and g € L1 (1) are
non-negative. Define measures s on A and v on B by

A):/Afdm and VQ(B):/Bgdyl,

for Ae Aand B € B.



(a) For De A Band y €Y, let D, = {z € X : (z,y) € D}. Show that if p;(D,) =0 11 a.e.,
then ps(Dy) =0 vy ace.

(b) Show that if D € A® B is such that (u; X v1)(D) = 0 then (us x v2)(D) = 0.

(¢) Show that for every D € A® B one has

(12 X v2)(D) = /D F@)g(y) dlu x 1) (@, ).

Proof(a) Suppose p11(Dy) = 0 vy ae. Let B={y €Y : u1(Dy) >0}, and C ={y € Y :
p2(Dy) > 0}. By our assumption, v1(B) = 0. By Theorem 10.9(ii), for any y € Y \ B one has
p2(Dy) = 0. Thus, C C B, so that v1(C) = 0. Applying Theorem 10.9(ii) again, we see that
v2(C) = 0. Thus, p2(Dy) =0 v, a.e.

Proof(b) Suppose that D € A® B is such that (1 x v1)(D) = 0. Then,

[ (D)) dnty) = G x m)(D) =0

By Theorem 10.9(i), we have that ui(D,) = 0 v; a.e. By part (a) above this implies that
p2(Dy) = 0 vp ae. Thus, by Theorem 10.9(i)

(2 x v2)(D) = / 13(D,) dva(y) = 0.

Proof(c) By Tonelli’s Theorem, and problem 5, we have

(42 x 12)(D) = /Y /X 1p, () dpia() da(y)

Il
—

([ 10,01 dis(@) ) tw) s o
X

_ / /X 1p(z, ) (2)g(y) dus (x) din (y)
1p(z,y)f(z)g(y) d(pr x v1)(z,y)

XY

f(@)g(y) d(p1 x v1)(z,y).
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