Measure and Integration Solutions Extra Exercises Final 2008

(1) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra, and λ Lebesgue measure.
(a) Let $f \in \mathcal{L}^{1}(\lambda)$. Show that for all $a \in \mathbb{R}$, one has

$$
\int_{\mathbb{R}} f(x-a) d \lambda(x)=\int_{\mathbb{R}} f(x) d \lambda(x) .
$$

(b) Let $k, g \in \mathcal{L}^{1}(\lambda)$. Define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and $h: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ by

$$
F(x, y)=k(x-y) g(y) \text { and } h(x)=\int_{\mathbb{R}} F(x, y) d \lambda(y)
$$

(i) Show that F is measurable.
(ii) Show that

$$
\int_{\mathbb{R}}|h(x)| d \lambda(x) \leq\left(\int_{\mathbb{R}}|k(x)| d \lambda(x)\right)\left(\int_{\mathbb{R}}|g(y)| d \lambda(y)\right) .
$$

$$
\text { and } \lambda(|h|=\infty)=0
$$

$\operatorname{Proof}(\mathbf{a}):$ We apply the standard argument. Suppose first that $f=\mathbf{1}_{A}$, where $A \in \mathcal{B}(\mathbb{R})$. By translation invariance of Lebesgue measure, we have for any $a \in \mathbb{R}$

$$
\int \mathbf{1}_{A}(x) d \lambda(x)=\lambda(A)=\lambda(A)=\lambda(A+a)=\int \mathbf{1}_{A+a}(x) d \lambda(x)=\int \mathbf{1}_{A}(x-a) d \lambda(x)
$$

Hence the result is true for indicator functions (we do not even need that $\lambda(A)<\infty$). Suppose now that $f \in \mathcal{E}^{+}$, and let $f=\sum_{i=0}^{n} a_{i} \mathbf{1}_{A_{i}}$ be a standard representation. Then

$$
\int f(x) d \lambda(x)=\sum_{i=0}^{n} a_{i} \int \mathbf{1}_{A_{i}}(x) d \lambda(x)=\sum_{i=0}^{n} a_{i} \int \mathbf{1}_{A_{i}}(x-a) d \lambda(x)=\int f(x-a) d \lambda(x) .
$$

Now let f be any non-negative measurable function. Then, there exists an increasing sequence $\left(g_{n}\right) \in \mathcal{E}^{+}$converging (pointwise) to f. By Beppo-Levi, we have

$$
\int f(x) d \lambda(x)=\lim _{n \rightarrow \infty} \int g_{n}(x) d \lambda(x)=\lim _{n \rightarrow \infty} \int g_{n}(x-a) d \lambda(x)=\int f(x-a) d \lambda(x) .
$$

Finally, suppose $f \in \mathcal{L}^{1}(\lambda)$. Write $f=f^{+}-f^{-}$. Since $f^{+}, f^{-} \geq 0$, then

$$
\begin{aligned}
\int f(x) d \lambda(x) & =\int f^{+}(x) d \lambda(x)-\int f^{-}(x) d \lambda(x) \\
& =\int f^{+}(x-a) d \lambda(x)-\int f^{-}(x-a) d \lambda(x)=\int f(x-a) d \lambda(x)
\end{aligned}
$$

(Note that only in the last part is the integrability of f needed).
$\operatorname{Proof}(\mathbf{b})(\mathbf{i})$: To show measurablity of F, we first extend the domain of g to \mathbb{R}^{2} as follows. Define $\bar{g}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $\bar{g}(x, y)=g(y)$. It is easy to see that \bar{g} is $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}(\mathbb{R})$ measurable. Moreover, the function $d: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $d(x, y)=x-y$ is continuous hence $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}(\mathbb{R})$ measurable. Since

$$
F(x, y)=k(x-y) g(y)=k \circ d(x, y) \bar{g}(x, y)
$$

is the product of two $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}(\mathbb{R})$ measurable functions, it follows that F is $\mathcal{B}\left(\mathbb{R}^{2}\right) / \mathcal{B}(\mathbb{R})$ measurable.

Proof(b)(ii): By part (a), we have

$$
\begin{aligned}
\left.\iint|F(x, y)| d \lambda(x) d \lambda\right)(y) & \left.=\iint|k(x-y)||g(y)| d \lambda(x) d \lambda\right)(y) \\
& \left.=\iint|k(x)||g(y)| d \lambda(x) d \lambda\right)(y) \\
& \left.=\int|k(x)| d \lambda(x) \int|g(y)| d \lambda\right)(y)<\infty
\end{aligned}
$$

By Fubini's Theorem, this implies that F is $\lambda \times \lambda$ integrable, and

$$
\begin{aligned}
\int|h(x)| d \lambda(x) & =\int\left|\int F(x, y) d \lambda(y)\right| d \lambda(x) \\
& \leq \iint|F(x, y)| d \lambda(y) d \lambda(x) \\
& \left.=\iint|F(x, y)| d \lambda(x) d \lambda\right)(y) \\
& \left.=\int|k(x)| d \lambda(x) \int|g(y)| d \lambda\right)(y)<\infty
\end{aligned}
$$

Since $\int|h(x)| d \lambda(x)<\infty$, it follows that $\lambda(|h|=\infty)=0$.
(2) Consider the measure space $((0, \infty), \mathcal{B}((0, \infty), \lambda)$, where $\mathcal{B}((0, \infty))$ and λ are the restrictions of the Borel σ-algebra and Lebesgue measure to the interval $(0, \infty)$. Show that

$$
\lim _{n \rightarrow \infty} \int_{(0, n)}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d \lambda(x)=1
$$

Proof: Let $u_{n}(x)=\mathbf{1}_{(0, n)}\left(1+\frac{x}{n}\right)^{n} e^{-2 x}$, then $\lim _{n \rightarrow \infty} u_{n}(x)=\mathbf{1}_{(0, \infty)} e^{-x}$. Using the fact that $1+x \leq e^{x}$, we see that $u_{n}(x) \leq \mathbf{1}_{(0, \infty)} e^{-x}$. Since the function e^{-x} is Riemann integrable on $[0, \infty)$, it follows that it is Lebesgue integrable on $[0, \infty)$ (and hence also on $(0, \infty)$). By Lebesgue Dominated Convergence Theorem (or the Monotone Convergence Theorem), we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{(0, n)}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d \lambda(x) & =\lim _{n \rightarrow \infty} \int u_{n}(x) d \lambda(x) \\
& =\int \mathbf{1}_{(0, \infty)} e^{-x} d \lambda(x)=\int_{0}^{\infty} e^{-x} d x=1
\end{aligned}
$$

(3) Let (X, \mathcal{A}, μ) be a probability space (i.e. $\mu(X)=1$).
(a) Suppose $1 \leq p<r$, and $f_{n}, f \in \mathcal{L}^{r}(\mu)$ satisfy $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{r}=0$. Show that $\lim _{n \rightarrow \infty} \| f_{n}-$ $f \|_{p}=0$.
(b) Assume $p, q>1$ satisfy $1 / p+1 / q=1$. Suppose $f_{n}, f \in \mathcal{L}^{p}(\mu)$, and $g_{n}, g \in \mathcal{L}^{q}(\mu)$ satisfy

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=\lim _{n \rightarrow \infty}\left\|g_{n}-g\right\|_{q}=0
$$

Show that $\lim _{n \rightarrow \infty}\left\|f_{n} g_{n}-f g\right\|_{1}=0$.
$\operatorname{Proof}(\mathbf{a})$: Since $\mu(X)=1$, by problem 12.1, we have

$$
0 \leq \lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p} \leq \lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{r}=0 .
$$

Thus, $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$.
$\operatorname{Proof}(\mathbf{b}):$ First notice that by the triangle inequality for $\left\|\|_{p}\right.$, we have

$$
\lim _{n \rightarrow \infty}\left|\left\|f_{n}\right\|_{p}-\|f\|_{p}\right| \leq \lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0
$$

Thus, $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}=\|f\|_{p}$. By Holder's inequality we have,

$$
\begin{aligned}
\left\|f_{n} g_{n}-f g\right\|_{1} & =\int\left|f_{n} g_{n}-f g\right| d \mu \\
& \leq \int\left|f_{n}\right|\left|g_{n}-g\right| d \mu+\int|g|\left|f_{n}-f\right| d \mu \\
& \leq\left\|f_{n}\right\|_{p}\left\|g_{n}-g\right\|_{q}+\|g\|_{q}\left\|f_{n}-f\right\|_{p}
\end{aligned}
$$

Taking limits, we get the desired result.
(4) Let $0<a<b$. Prove with the help of Tonelli's theorem (applied to the function $f(x, y)=e^{-x t}$) that $\int_{[0, \infty)}\left(e^{-a t}-e^{-b t}\right) \frac{1}{t} d \lambda(t)=\log (b / a)$, where λ denotes Lebesgue measure.

Proof Let $f:[a, b] \times[0, \infty)$ be given by $f(x, y)=e^{-x t}$. Then f is continuous (hence measurable) and $f>0$. By Toneli's theorem

$$
\int_{[0, \infty)} \int_{[a, b]} e^{-x t} d \lambda(x) d \lambda(t)=\int_{[a, b]} \int_{[0, \infty)} e^{-x t} d \lambda(t) d \lambda(x)
$$

For each fixed $x \in[a, b]$, the function $t \rightarrow e^{-x t}$ is Riemann integrable on $[0, \infty)$, so that

$$
\int_{[0, \infty)} e^{-x t} d \lambda(t)=\int_{0}^{\infty} e^{-x t} d t=\frac{1}{x}
$$

Furthermore, the function $x \rightarrow \frac{1}{x}$ is Riemann integrable on $[a, b]$, thus

$$
\int_{[a, b]} \int_{[0, \infty)} e^{-x t} d \lambda(t) d \lambda(x)=\int_{[a, b]} \frac{1}{x} d \lambda(x)=\int_{a}^{b} \frac{1}{x} d x=\log (b / a)
$$

On the other hand,

$$
\int_{[0, \infty)} \int_{[a, b]} e^{-x t} d \lambda(x) d \lambda(t)=\int_{[0, \infty)} \int_{a}^{b} e^{-x t} d x d \lambda(t)=\int_{[0, \infty)}\left(e^{-a t}-e^{-b t}\right) \frac{1}{t} d \lambda(t)
$$

Therefore, $\int_{[0, \infty)}\left(e^{-a t}-e^{-b t}\right) \frac{1}{t} d \lambda(t)=\log (b / a)$.
(5) Let (E, \mathcal{B}, ν) be a measure space, and $h: E \rightarrow \mathbb{R}$ a non-negative measurable function. Define a measure μ on (E, \mathcal{B}) by $\mu(A)=\int_{A} h d \nu$ for $A \in \mathcal{B}$. Show that for every non-negative measurable function $F: E \rightarrow \mathbb{R}$ one has

$$
\int_{E} F d \mu=\int_{E} F h d \nu
$$

Conclude that the result is still true for $F \in \mathcal{L}^{1}(\mu)$ which is not necessarily non-negative.
Proof Suppose first that $F=1_{A}$ is the indicator function of some measurable set $A \in \mathcal{B}$. Then,

$$
\int_{E} F d \mu=\mu(A)=\int_{A} h d \nu=\int_{E} 1_{A} h d \nu=\int_{E} F h d \nu
$$

Suppose now that $F=\sum_{k=1}^{n} \alpha_{k} 1_{A_{k}}$ is a non-negative measurable step function. Then,

$$
\int_{E} F d \mu=\sum_{k=1}^{n} \alpha_{k} \mu\left(A_{k}\right)=\sum_{k=1}^{n} \alpha_{k} \int_{E} 1_{A} h d \nu=\int_{E} \sum_{k=1}^{n} \alpha_{k} 1_{A} h d \nu=\int_{E} F h d \nu
$$

Suppose that F is a non-negative measurable function, then there exists a sequence of nonnegative measurable step functions F_{n} such that $F_{n} \uparrow F$. Then, $F_{n} h \uparrow F h$, and by Beppo-Levi,

$$
\int_{E} F d \mu=\lim _{n \rightarrow \infty} \int_{E} F_{n} d \mu=\lim _{n \rightarrow \infty} \int_{E} F_{n} h d \nu=\int_{E} F h d \nu
$$

Finally, suppose that $F \in \mathcal{L}^{1}(\mu)$. Since F^{+}, F^{-}are non-negative, we have

$$
\int_{E} F^{+} d \mu=\int_{E} F^{+} h d \nu \text { and } \int_{E} F^{-} d \mu=\int_{E} F^{-} h d \nu
$$

Since $F \in \mathcal{L}^{1}(\mu)$, from the above we see that $F h \in \mathcal{L}^{1}(\nu)$, hence

$$
\int_{E} F d \mu=\int_{E} F^{+} d \mu-\int_{E} F^{-} d \mu=\int_{E} F^{+} h d \nu-\int_{E} F^{-} h d \nu=\int_{E} F h d \nu
$$

(6) Let $\left(X, \mathcal{A}, \mu_{1}\right)$ and $\left(Y, \mathcal{B}, \nu_{1}\right)$ be σ-finite measure spaces. Suppose $f \in \mathcal{L}^{1}\left(\mu_{1}\right)$ and $g \in \mathcal{L}^{1}\left(\nu_{1}\right)$ are non-negative. Define measures μ_{2} on \mathcal{A} and ν_{2} on \mathcal{B} by

$$
\mu_{2}(A)=\int_{A} f d \mu_{1} \text { and } \nu_{2}(B)=\int_{B} g d \nu_{1}
$$

for $A \in \mathcal{A}$ and $B \in \mathcal{B}$.
(a) For $D \in \mathcal{A} \otimes \mathcal{B}$ and $y \in Y$, let $D_{y}=\{x \in X:(x, y) \in D\}$. Show that if $\mu_{1}\left(D_{y}\right)=0 \nu_{1}$ a.e., then $\mu_{2}\left(D_{y}\right)=0 \nu_{2}$ a.e.
(b) Show that if $D \in \mathcal{A} \otimes \mathcal{B}$ is such that $\left(\mu_{1} \times \nu_{1}\right)(D)=0$ then $\left(\mu_{2} \times \nu_{2}\right)(D)=0$.
(c) Show that for every $D \in \mathcal{A} \otimes \mathcal{B}$ one has

$$
\left(\mu_{2} \times \nu_{2}\right)(D)=\int_{D} f(x) g(y) d\left(\mu_{1} \times \nu_{1}\right)(x, y)
$$

Proof(a) Suppose $\mu_{1}\left(D_{y}\right)=0 \nu_{1}$ a.e. Let $B=\left\{y \in Y: \mu_{1}\left(D_{y}\right)>0\right\}$, and $C=\{y \in Y$: $\left.\mu_{2}\left(D_{y}\right)>0\right\}$. By our assumption, $\nu_{1}(B)=0$. By Theorem 10.9(ii), for any $y \in Y \backslash B$ one has $\mu_{2}\left(D_{y}\right)=0$. Thus, $C \subset B$, so that $\nu_{1}(C)=0$. Applying Theorem 10.9(ii) again, we see that $\nu_{2}(C)=0$. Thus, $\mu_{2}\left(D_{y}\right)=0 \nu_{2}$ a.e.
$\operatorname{Proof}(\mathbf{b})$ Suppose that $D \in \mathcal{A} \otimes \mathcal{B}$ is such that $\left(\mu_{1} \times \nu_{1}\right)(D)=0$. Then,

$$
\int \mu_{1}\left(D_{y}\right) d \nu_{1}(y)=\left(\mu_{1} \times \nu_{1}\right)(D)=0
$$

By Theorem 10.9(i), we have that $\mu_{1}\left(D_{y}\right)=0 \nu_{1}$ a.e. By part (a) above this implies that $\mu_{2}\left(D_{y}\right)=0 \nu_{2}$ a.e. Thus, by Theorem 10.9(i)

$$
\left(\mu_{2} \times \nu_{2}\right)(D)=\int \mu_{2}\left(D_{y}\right) d \nu_{2}(y)=0
$$

Proof(c) By Tonelli's Theorem, and problem 5, we have

$$
\begin{aligned}
\left(\mu_{2} \times \nu_{2}\right)(D) & =\int_{Y} \int_{X} \mathbf{1}_{D_{y}}(x) d \mu_{2}(x) d \nu_{2}(y) \\
& =\int_{Y}\left(\int_{X} \mathbf{1}_{D_{y}}(x) f(x) d \mu_{1}(x)\right) d \nu_{2}(y) \\
& =\int_{Y}\left(\int_{X} \mathbf{1}_{D_{y}}(x) f(x) d \mu_{1}(x)\right) g(y) d \nu_{1}(y) \\
& =\int_{Y} \int_{X} \mathbf{1}_{D}(x, y) f(x) g(y) d \mu_{1}(x) d \nu_{1}(y) \\
& =\int_{X \times Y} \mathbf{1}_{D}(x, y) f(x) g(y) d\left(\mu_{1} \times \nu_{1}\right)(x, y) \\
& =\int_{D} f(x) g(y) d\left(\mu_{1} \times \nu_{1}\right)(x, y)
\end{aligned}
$$

