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Measure and Integration solutions of extra problems

1. Consider the measure space (R,B(R), λ), where B(R) is the Borel σ-algebra over R
and λ is Lebesgue measure on B(R). Let f : R → R be given by

f(x) =


0 if x < 0

2−k if x ∈ [k, k + 1), k ∈ Z, k ≥ 0.

(a) Show that f is measurable, i.e. f−1(B) ∈ B(R) for all B ∈ B(R).

(b) Determine the values of λ({f > 1}), λ({f < 1} and λ({1/4 ≤ f < 1}.
(c) Determine the value of

∫
f dλ.

Proof(a): It is enough to show that f−1 ((−∞, a]) ∈ BR for all a ∈ R. Now,

f−1 ((−∞, a]) =


∅ if a < 0

(−∞, 0] ∪ [k + 1,∞) if 1
2k+1 ≤ a < 1

2k , k ≥ 0

R if a ≥ 1.

In all cases one sees that f−1 ((−∞, a]) ∈ BR. Thus, f is measurable.

Proof(b):
λ({f > 1}) = λ(∅) = 0.

λ({f < 1} =
∞∑

k=1

λ({f = 2−k}) =
∞∑

k=1

λ([k, k + 1)) = ∞.

λ({1/4 ≤ f < 1}) = λ({f = 1/2}) + λ({f = 1/4}) = 2.

Proof(c): Notice that f =
∞∑

k=0

2−k1[k,k+1). Thus, by Corollary 9.9, f is measurable

and ∫
f dλ =

∞∑
k=0

∫
2−k1[k,k+1) dλ =

∞∑
k=0

2−k = 2.

2. Let (X,B, µ) be a measure space, and (Gn)n ⊂ B such that µ(Gn ∩ Gm) = 0 for

m 6= n. Show that µ(
⋃
n

Gn) =
∑

n

µ(Gn).
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Proof: Let A1 = G1, B1 = ∅. For n ≥ 2, set An = Gn \
⋃n−1

m=1 Gm and Bn =
Gn ∩

⋃n−1
m=1 Gm =

⋃n−1
m=1(Gn ∩Gm). Then,

– Gn = An ∪Bn for all n ≥ 1,

– An ∩ Am = ∅ for m 6= n,

– µ(Bn) = 0 for all n ≥ 1 (since µ(Gn ∩Gm) = 0 for n 6= m), hence µ(Gn) = µ(An)
for all n ≥ 1,

–
⋃∞

n=1 An =
⋃∞

n=1 Gn: clearly the left handside is a subset of the right handside.
Now, let x ∈

⋃∞
n=1 Gn, then x ∈ Gn for some n. Let n0 be the smallest positive

integer such that x ∈ Gn0 , then x ∈ An0 ⊆
⋃∞

n=1 An.

Hence,

µ(
∞⋃

n=1

Gn) = µ(
∞⋃

n=1

An) =
∞∑

n=1

µ(An) =
∞∑

n=1

µ(Gn).

3. Let (X,B, ν) be a measure space, and suppose X =
∞⋃

n=1

En, where {En} is a collec-

tion of pairwise disjoint measurable sets such that ν(En) < ∞ for all n ≥ 1. Define

µ on B by µ(B) =
∞∑

n=1

2−nν(B ∩ En)/(ν(En) + 1).

(a) Prove that µ is a finite measure on (X,B).

(b) Let B ∈ B. Prove that µ(B) = 0 if and only if ν(B) = 0.

Proof (a): Clearly µ(∅) = 0, and

µ(X) =
∞∑

n=1

2−nν(En)/(ν(En) + 1) ≤
∞∑

n=1

2−n = 1 < ∞.

Now, let (Cn) be a disjoint sequence in B. Then,

µ(
⋃∞

m=1 Cm) =
∞∑

n=1

2−nν((
∞⋃

m=1

Cm) ∩ En)/(ν(En) + 1)

=
∞∑

n=1

2−n

∞∑
m=1

ν(Cm ∩ En)/(ν(En) + 1)

=
∞∑

m=1

∞∑
n=1

2−nν(Cm ∩ En)/(ν(En) + 1)

=
∞∑

m=1

µ(Cm).

Thus, µ is a finite measure.

Proof (b): Suppose that ν(B) = 0, then ν(B ∩En) = 0 for all n, hence µ(B) = 0.

Conversely, suppose µ(B) = 0, then ν(B ∩ En) = 0 for all n. Since X =
∞⋃

n=1

En
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(disjoint union), then

ν(B) = ν(B ∩
∞⋃

n=1

En) = ν(
∞⋃

n=1

(B ∩ En)) =
∞∑

n=1

ν(B ∩ En) = 0.

4. Let (E,B, µ) be a measure space, and Bµ
be the completion of the σ-algebra B with

respect to the measure µ (see exercise 4.13, p.29). We denote by µ the extension
of the measure µ to the σ-algebra Bµ

. Suppose f : E → E is a function such that
f−1(B) ∈ B and µ(f−1(B)) = µ(B) for each B ∈ B. Show that f−1(B) ∈ Bµ

and
µ(f−1(B)) = µ(B) for all B ∈ Bµ

.

Proof: Let B ∈ Bµ
, then there exist A, B ∈ B such that A ⊆ B ⊆ B, µ(B \A) = 0

and µ(B) = µ(A). Then, f−1(A), f−1(B) ∈ B satisfy f−1(A) ⊆ f−1(B) ⊆ f−1(B)
and µ(f−1(B) \ f−1(A)) = µ(f−1(B \ A)) = µ(B \ A) = 0. Thus, f−1(B) ∈ Bµ

and
µ(f−1(B)) = µ(f−1(A) = µ(A) = µ(B).

5. Let X be a set, and C ⊆ P(X). Consider σ(C), the smallest σ-algebra over X
containing C, and let D be the collection of sets A ∈ σ(C) with the property that
there exists a countable collection C0 ⊆ C (depending on A) such that A ∈ σ(C0).

(a) Show that D is a σ-algebra over X.

(b) Show that D = σ(C).

Proof (a): Clearly ∅ ∈ D since ∅ belongs to every σ-algebra. Let A ∈ D, then
there is a countable collection C0 ⊆ C such that A ∈ σ(C0). But then Ac ∈ σ(C0),
hence Ac ∈ D. Finally, let {An} be in D, then for each n there exists a countable
collection Cn ⊆ C such that An ∈ σ(Cn). Let C0 =

⋃
n Cn, then C0 ⊆ C, and C0 is

countable. Furthermore, σ(Cn) ⊆ σ(C0), and hence An ∈ σ(C0) for each n which
implies that

⋃
n An ∈ σ(C0). Therefore,

⋃
n An ∈ D and D is a σ-algebra.

Proof (b): By definition D ⊆ σ(C). Also, C ⊆ D since C ∈ σ({C}) for every C ∈ C.
Since σ(C) is the smallest σ-algebra over X containg C, then by part (a) σ(C) ⊆ D.
Thus, D = σ(C).

6. Let (X,B, µ) be a probability space, i.e. µ(X) = 1. Let f : X → [0, 1) be a measur-

able function such that µ

(
f−1([

k

2n
,
k + 1

2n
)

)
=

1

2n
for n ≥ 1 and k = 0, 1, · · · , 2n−1.

Show that
∫

X
f 2 dµ =

1

3
.

Proof Let Ak,n = f−1([
k

2n
,
k + 1

2n
)), for n ≥ 1 and k = 0, 1, · · · , 2n − 1. For n ≥ 1,

let gn =
2n−1∑
k=0

k2

4n
1Ak,n

. Then, gn is a sequence of non-negative measurable functions

such that gn(x) ↑ f 2(x) for all x ∈ [0, 1). Furthermore,∫
X

gn dµ =
2n−1∑
k=0

k2

8n
=

2n(2n − 1)(2n+1 − 1)

6 · 8n
.
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By Beppo-Levi,∫
X

f 2 dµ = lim
n→∞

∫
E

gn dµ = lim
n→∞

2n(2n − 1)(2n+1 − 1)

6 · 8n
=

1

3
.
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