Measure and Integration Solutions to More Extra Exercises Final 2008

1. Let (X, \mathcal{A}, μ) be a measure space. Let $f_{n}, f \in \mathcal{L}^{p}(\mu)$ be such that $f=\mathcal{L}^{p}(\mu)-$ $\lim _{n \rightarrow \infty} f_{n}$. Prove that for every $\epsilon>0$, one has

$$
\lim _{n \rightarrow \infty} \mu\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)=0
$$

Proof: Since $f=\mathcal{L}^{p}(\mu)-\lim _{n \rightarrow \infty} f_{n}$, then $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$. Given any $\epsilon>0$, by Markov inequality

$$
\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)=\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|^{p} \geq \epsilon^{p}\right\}\right) \leq \frac{1}{\epsilon^{p}}\left\|f_{n}-f\right\|_{p}^{p}
$$

Taking the limit as $n \rightarrow \infty$, we get

$$
\lim _{n \rightarrow \infty} \mu\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)=0 .
$$

2. Let (X, \mathcal{A}, μ) be a probability space (i.e. $\mu(X)=1)$ and let $\left\{f_{n}\right\}$ be a sequence in $L^{1}(\mu)$ such that $\int_{X}\left|f_{n}\right| d \mu=\alpha$ for all $n \geq 1$, where $\alpha \in(0, \infty)$. Let

$$
A_{n}=\left\{x:\left|f_{n}(x)-\int_{X} f_{n} d \mu\right| \geq n^{2}\right\} .
$$

Show that $\mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0$. (Hint: use Borel-Cantelli Lemma).
Proof By Markov Inequality we have

$$
\mu\left(A_{n}\right) \leq \frac{1}{n^{2}} \int_{X}\left|f_{n}(x)-\int_{X} f_{n} d \mu\right| \leq \frac{2 \alpha}{n^{2}} .
$$

Since $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\sum_{n=1}^{\infty} \frac{2 \alpha}{n^{2}}<\infty$, it follows by Borel-Cantelli Lemma (Exercise 6.9) that $\mu\left(\lim \sup _{n \rightarrow \infty} A_{n}\right)=0$.
3. Let μ and ν be two measures on the measure space (E, \mathcal{B}) such that $\mu(A) \leq \nu(A)$ for all $A \in \mathcal{B}$.
(a) Show that if f is any non-negative measurable function on (E, \mathcal{B}), then $\int_{E} f d \mu \leq$ $\int_{E} f d \nu$.
(b) Prove that if ν is a finite measure, then $\mathcal{L}^{2}(\nu) \subseteq \mathcal{L}^{1}(\mu)$.

Proof Suppose first that $f=1_{A}$ is the indicator function of some set $A \in \mathcal{B}$. Then

$$
\int_{E} f d \mu=\mu(A) \leq \nu(A)=\int_{E} f d \nu
$$

Suppose now that $f=\sum_{k=1}^{n} \alpha_{k} 1_{A_{k}}$ is a non-negative measurable step function. Then,

$$
\int_{E} f d \mu=\sum_{k=1}^{n} \alpha_{k} \mu\left(A_{k}\right) \leq \sum_{k=1}^{n} \alpha_{k} \nu\left(A_{k}\right)=\int_{E} f d \nu
$$

Finally, let f be a non-negative measurable function, then there exists a sequence of non-negative measurable step functions f_{n} such that $f_{n} \uparrow f$. By the Monotone Convergence Theorem,

$$
\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \leq \lim _{n \rightarrow \infty} \int_{E} f_{n} d \nu=\int_{E} f d \nu
$$

The above implies that if $f \in L^{1}(\nu)$, then $f \in L^{1}(\mu)$, i.e. $L^{1}(\nu) \subseteq L^{1}(\mu)$.
If ν is a finite measure, then by exercise 12.1 (ii) and the above, we have $L^{2}(\nu) \subseteq$ $L^{1}(\nu) \subseteq L^{1}(\mu)$.
4. Consider the measure space $([0,1), \mathcal{B}([0,1), \lambda)$, where $\mathcal{B}([0,1))$ and λ are the restrictions of the Borel σ-algebra and Lebesgue measure on $[0,1)$. Define a sequence of measurable functions f_{n} on $[0,1)$ as follows: given $n \geq 1$, there exist an $m \geq 0$ and $0 \leq l \leq 2^{m}-1$ such that $n=2^{m}+l$ (note that this representation is unique). Set $f_{n}=f_{2^{m}+l}=1_{\left[l / 2^{m},(l+1) / 2^{m}\right)}$.
(a) Determine explicitly $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}$.
(b) Show that $\limsup _{n \rightarrow \infty} f_{n}(x)=1$ for all $x \in[0,1]$.
(c) Show that $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{1}=0$. Conclude that L^{1}-convergence does not imply λ a.e. convergence.

Proof (a) Notice that $1=2^{0}+0,2=2^{1}+0,3=2^{1}+1,4=2^{2}+0,5=2^{2}+1,6=$ $2^{2}+2,7=2^{2}+3$. Thus, $f_{1}=1_{[0,1)}, f_{2}=1_{[0,1 / 2)}, f_{3}=1_{[1 / 2,1)}, f_{4}=1_{[0,1 / 4)}, f_{5}=$ $1_{[1 / 4,2 / 4)}, f_{6}=1_{[2 / 4,3 / 4)}, f_{7}=1_{[3 / 4,1)}$.

Proof (b) Notice that for each $m \geq 1,\left\{\left[l / 2^{m},(l+1) / 2^{m}\right): 0 \leq l \leq 2^{m}-1\right\}$ forms a partition of $[0,1)$. Hence, for each $x \in[0,1)$ and for every $m \geq 0$ there exists an $0 \leq l \leq 2^{m}-1$ such that $f_{2^{m}+l}(x)=1$. Thus $f_{n}(x)=1$ for infinitely many n. This shows that $\limsup _{n \rightarrow \infty} f_{n}(x)=1$ for all $x \in[0,1]$.

Proof (c) If $n=2^{m}+l$, then $\left\|f_{n}\right\|_{L^{1}\left(\lambda_{[0,1)}\right)}=\int_{[0,1)} f_{2^{m}+l} d \lambda_{[0,1)}=1 / 2^{m}$. Since $m \rightarrow \infty$ as $n \rightarrow \infty$, taking limits we see that $\lim _{n \rightarrow \infty}\|f\|_{L^{1}\left(\lambda_{[0,1)}\right)}=0$. This shows that $f_{n} \rightarrow 0$ in $L^{1}\left(\lambda_{[0,1)}\right)$ but from part (b), f_{n} does not converge to 0μ a.e.
5. Let $E_{1}=E_{2}=\mathbb{N}=\{1,2,3, \cdots\}$. Let \mathcal{B} be the collection of all subsets of \mathbb{N}. and $\mu_{1}=\mu_{2}$ be counting measure on \mathbb{N}. Let $f: E_{1} \times E_{2} \rightarrow \mathbb{R}$ by $f(n, n)=n$, $f(n, n+1)=-n$ and $f(n, m)=0$ for $m \neq n, n+1$.
(a) Prove that $\int_{E_{1}} \int_{E_{2}} f(n, m) d \mu_{2}(m) d \mu_{1}(n)=0$.
(b) Prove that $\int_{E_{2}} \int_{E_{1}} f(n, m) d \mu_{1}(n) d \mu_{2}(m)=\infty$.
(c) Explain why parts (a) and (b) do not contradict Fubini's Theorem.

Proof (a) For each fixed n one has

$$
\int_{E_{2}} f(n, m) d \mu_{2}(m)=f(n, n) \mu_{2}(\{n\})+f(n, n+1) \mu_{2}(\{n+1\})=0 .
$$

Thus, $\int_{E_{1}} \int_{E_{2}} f(n, m) d \mu_{2}(m) d \mu_{1}(n)=0$.
Proof (b) For each fixed m,

$$
\int_{E_{1}} f(n, m) d \mu_{1}(n)=f(m, m) \mu_{1}(\{m\})+f(m-1, m) \mu_{1}(\{m-1\})=1
$$

Thus, $\int_{E_{2}} \int_{E_{1}} f(n, m) d \mu_{1}(n) d \mu_{2}(m)=\int_{E_{2}} 1 d \mu_{2}(m)=\mu_{2}\left(E_{2}\right)=\infty$.
Proof (c) Parts (a) and (b) do not contradict Fubini's Theorem because the function f is not $\mu_{1} \times \mu_{2}$ integrable. This follows from

$$
\int_{E_{1}} \int_{E_{2}}|f(n, m)| d \mu_{2}(m) d \mu_{1}(n)=\int_{E_{1}} 2 n d \mu_{1}(n)=\sum_{n=1}^{\infty} 2 n=\infty .
$$

