Universiteit Utrecht

Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Measure and Integration Solutions 1

1. Let J be a rectangle in \mathbb{R}^n , $c, d \in \mathbb{R}$, and $f, g: J \to \mathbb{R}$ Riemann integrable functions. Show that cf + dg is Riemann Integrable on J.

Proof. Notice that for any exact non-overlapping finite cover C of J and any choice function ξ , we have

 $\mathcal{R}(cf + dg; \mathcal{C}, \xi) = c\mathcal{R}(f; \mathcal{C}, \xi), d\mathcal{R}(g; \mathcal{C}, \xi).$

Given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|\mathcal{R}(f;\mathcal{C},\xi) - (R)\int_{J} f(x)dx| < \varepsilon, \text{ and } |\mathcal{R}(g;\mathcal{C},\xi) - (R)\int_{J} g(x)dx| < \varepsilon$$

for all exact non-overlapping finite covers C of J such that $||C|| < \delta$ and all choice functions ξ . Then,

$$|\mathcal{R}(cf+dg;\mathcal{C},\xi)-c(R)\int_{J}f(x)dx+d(R)\int_{J}g(x)dx|<\varepsilon(|c|+|d|).$$

Thus, cf + dg is Riemann Integrable on J.

2. Let J be a rectangle in \mathbb{R}^n , and $f : J \to \mathbb{R}$ a bounded function. Show that f is Riemann Integrable on J if and only if for every $\epsilon > 0$, there exists a finite non-overlapping exact cover \mathcal{C} of J such that

$$\mathcal{U}(f;\mathcal{C}) - \mathcal{L}(f;\mathcal{C}) < \epsilon.$$

Proof. Suppose f is Riemann integrable. Then,

$$\lim_{\|\mathcal{C}\|\to 0} \mathcal{U}(f;\mathcal{C}) = \lim_{\|\mathcal{C}\|\to 0} \mathcal{L}(f;\mathcal{C}) = (R) \int_J f(x) dx$$

Given $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$|\mathcal{U}(f;\mathcal{C}) - (R) \int_J f(x) dx| < \varepsilon/2, \text{ and } |\mathcal{L}(f;\mathcal{C}) - (R) \int_J f(x) dx| < \varepsilon/2$$

for all exact non-overlapping finite covers C of J such that $||C|| < \delta$. Choose any such cover C, then $\mathcal{U}(f; C) - \mathcal{L}(f; C) < \varepsilon$.

Conversely, Let $\varepsilon > 0$ and suppose C is a finite non-overlapping exact cover of J such that

$$\mathcal{U}(f;\mathcal{C}) - \mathcal{L}(f;\mathcal{C}) < \epsilon.$$

Then,

$$\inf_{\mathcal{C}'} \mathcal{U}(f;\mathcal{C}') - \sup_{\mathcal{C}'} \mathcal{L}(f;\mathcal{C}') \le \mathcal{U}(f;\mathcal{C}) - \mathcal{L}(f;\mathcal{C}) < \epsilon.$$

Since $\varepsilon > 0$ is arbitrary, we get $\inf_{\mathcal{C}'} \mathcal{U}(f; \mathcal{C}') = \sup_{\mathcal{C}'} \mathcal{L}(f; \mathcal{C}')$. By Theorem 1.1.8, f is Riemann integrable.

3. Suppose $f : [a, b] \to \mathbb{R}$ is a bounded monotone function. Show that f is Riemann Integrable.

Proof. Let $\varepsilon > 0$, choose n sufficiently large so that $(f(b) - f(a))(b - a)/n < \varepsilon$. Let

$$\mathcal{C} = \{ [a + (i-1)\frac{b-a}{n}, a+i\frac{b-a}{n}] : i = 1, 2, \cdots, n \}$$

Then, C is a finite non-overlapping exact cover of [a, b]. Assume with no loss of generality that f is non-decreasing, then

$$\mathcal{U}(f;\mathcal{C}) = \sum_{i=1}^{n} \frac{b-a}{n} f(a+i\frac{b-a}{n}),$$

and

$$\mathcal{L}(f;\mathcal{C}) = \sum_{i=1}^{n} \frac{b-a}{n} f(a+(i-1)\frac{b-a}{n}).$$

Thus,

$$\mathcal{U}(f;\mathcal{C}) - \mathcal{L}(f;\mathcal{C}) = (f(b) - f(a))\frac{b-a}{n} < \varepsilon.$$

By exercise (2) above, it follows that f is Riemann integrable.

4. Let $f : [a, b] \to \mathbb{R}$ be a bounded function, and suppose that f is continuous except at the points $t_1 < t_2 < \cdots < t_n$. Show that f is Riemann Integrable.

Proof. Let $\varepsilon > 0$ and define $I_j = (s_j - \varepsilon/2n, s_j + \varepsilon/2n)$ for $j = 1, 2, \dots, n$. Then, $\sum_{j=1}^n \operatorname{vol}(I_j) = \varepsilon$. Let $\mathcal{B} = \{\overline{I}_j = [s_j - \varepsilon/2n, s_j + \varepsilon/2n] : j = 1, 2, \dots, n\}$ and $K = [a, b] - \bigcup_{j=1}^n I_j$. Then K is compact, and is the disjoint union of n + 1closed intervals. By the uniform continuity of f on K, there is a $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ for all $x, y \in K$ with $|x - y| < \delta$. Now, divide each interval making up K into closed intervals of length less than δ , and let \mathcal{G} be the collection of closed intervals thus obtained. Consider the cover $\mathcal{C} = \mathcal{B} \cup \mathcal{G}$. Then, \mathcal{C} is a finite non-overlapping exact cover of [a, b], and

$$\begin{aligned} \mathcal{U}(f;\mathcal{C}) - \mathcal{L}(f;\mathcal{C}) &= \sum_{I \in \mathcal{G}} (\sup_{x \in I} f(x) - \inf_{x \in I} f(x)) \operatorname{vol}(I) + \sum_{I \in \mathcal{B}} (\sup_{x \in I} f(x) - \inf_{x \in I} f(x)) \operatorname{vol}(I) \\ &< \varepsilon(b-a) + 2 \|f\|_u \varepsilon, \end{aligned}$$

where, $||f||_u = \sup_{x \in [a,b]} |f(x)|$. By exercise 2 above, it follows that f is Riemann integrable.