Measure and Integration Solutions 1

1. Let J be a rectangle in $\mathbb{R}^{n}, c, d \in \mathbb{R}$, and $f, g: J \rightarrow \mathbb{R}$ Riemann integrable functions. Show that $c f+d g$ is Riemann Integrable on J.
Proof. Notice that for any exact non-overlapping finte cover \mathcal{C} of J and any choice function ξ, we have

$$
\mathcal{R}(c f+d g ; \mathcal{C}, \xi)=c \mathcal{R}(f ; \mathcal{C}, \xi), d \mathcal{R}(g ; \mathcal{C}, \xi)
$$

Given $\varepsilon>0$, there exists $\delta>0$ such that

$$
\left|\mathcal{R}(f ; \mathcal{C}, \xi)-(R) \int_{J} f(x) d x\right|<\varepsilon, \text { and }\left|\mathcal{R}(g ; \mathcal{C}, \xi)-(R) \int_{J} g(x) d x\right|<\varepsilon
$$

for all exact non-overlapping finte covers \mathcal{C} of J such that $\|\mathcal{C}\|<\delta$ and all choice functions ξ. Then,

$$
\left|\mathcal{R}(c f+d g ; \mathcal{C}, \xi)-c(R) \int_{J} f(x) d x+d(R) \int_{J} g(x) d x\right|<\varepsilon(|c|+|d|) .
$$

Thus, $c f+d g$ is Riemann Integrable on J.
2. Let J be a rectangle in \mathbb{R}^{n}, and $f: J \rightarrow \mathbb{R}$ a bounded function. Show that f is Riemann Integrable on J if and only if for every $\epsilon>0$, there exists a finite non-overlapping exact cover \mathcal{C} of J such that

$$
\mathcal{U}(f ; \mathcal{C})-\mathcal{L}(f ; \mathcal{C})<\epsilon
$$

Proof. Suppose f is Riemann integrable. Then,

$$
\lim _{\|\mathcal{C}\| \rightarrow 0} \mathcal{U}(f ; \mathcal{C})=\lim _{\|\mathcal{C}\| \rightarrow 0} \mathcal{L}(f ; \mathcal{C})=(R) \int_{J} f(x) d x
$$

Given $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\left|\mathcal{U}(f ; \mathcal{C})-(R) \int_{J} f(x) d x\right|<\varepsilon / 2, \text { and }\left|\mathcal{L}(f ; \mathcal{C})-(R) \int_{J} f(x) d x\right|<\varepsilon / 2
$$

for all exact non-overlapping finte covers \mathcal{C} of J such that $\|\mathcal{C}\|<\delta$. Choose any such cover \mathcal{C}, then $\mathcal{U}(f ; \mathcal{C})-\mathcal{L}(f ; \mathcal{C})<\varepsilon$.
Conversely, Let $\varepsilon>0$ and suppose \mathcal{C} is a finite non-overlapping exact cover of J such that

$$
\mathcal{U}(f ; \mathcal{C})-\mathcal{L}(f ; \mathcal{C})<\epsilon .
$$

Then,

$$
\inf _{\mathcal{C}^{\prime}} \mathcal{U}\left(f ; \mathcal{C}^{\prime}\right)-\sup _{\mathcal{C}^{\prime}} \mathcal{L}\left(f ; \mathcal{C}^{\prime}\right) \leq \mathcal{U}(f ; \mathcal{C})-\mathcal{L}(f ; \mathcal{C})<\epsilon .
$$

Since $\varepsilon>0$ is arbitrary, we get $\inf _{\mathcal{C}^{\prime}} \mathcal{U}\left(f ; \mathcal{C}^{\prime}\right)=\sup _{\mathcal{C}^{\prime}} \mathcal{L}\left(f ; \mathcal{C}^{\prime}\right)$. By Theorem 1.1.8, f is Riemann integrable.
3. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a bounded monotone function. Show that f is Riemann Integrable.
Proof. Let $\varepsilon>0$, choose n sufficiently large so that $(f(b)-f(a))(b-a) / n<\varepsilon$. Let

$$
\mathcal{C}=\left\{\left[a+(i-1) \frac{b-a}{n}, a+i \frac{b-a}{n}\right]: i=1,2, \cdots, n\right\} .
$$

Then, \mathcal{C} is a finite non-overlapping exact cover of $[a, b]$. Assume with no loss of generality that f is non-decreasing, then

$$
\mathcal{U}(f ; \mathcal{C})=\sum_{i=1}^{n} \frac{b-a}{n} f\left(a+i \frac{b-a}{n}\right)
$$

and

$$
\mathcal{L}(f ; \mathcal{C})=\sum_{i=1}^{n} \frac{b-a}{n} f\left(a+(i-1) \frac{b-a}{n}\right) .
$$

Thus,

$$
\mathcal{U}(f ; \mathcal{C})-\mathcal{L}(f ; \mathcal{C})=(f(b)-f(a)) \frac{b-a}{n}<\varepsilon
$$

By exercise (2) above, it follows that f is Riemann integrable.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function, and suppose that f is continuous except at the points $t_{1}<t_{2}<\cdots<t_{n}$. Show that f is Riemann Integrable.
Proof. Let $\varepsilon>0$ and define $I_{j}=\left(s_{j}-\varepsilon / 2 n, s_{j}+\varepsilon / 2 n\right)$ for $j=1,2, \cdots, n$. Then, $\sum_{j=1}^{n} \operatorname{vol}\left(I_{j}\right)=\varepsilon$. Let $\mathcal{B}=\left\{\bar{I}_{j}=\left[s_{j}-\varepsilon / 2 n, s_{j}+\varepsilon / 2 n\right]: j=1,2, \cdots, n\right\}$ and $K=[a, b]-\cup_{j=1}^{n} I_{j}$. Then K is compact, and is the disjoint union of $n+1$ closed intervals. By the uniform continuity of f on K, there is a $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ for all $x, y \in K$ with $|x-y|<\delta$. Now, divide each interval making up K into closed intervals of length less than δ, and let \mathcal{G} be the collection of closed intervals thus obtained. Consider the cover $\mathcal{C}=\mathcal{B} \cup \mathcal{G}$. Then, \mathcal{C} is a finite non-overlapping exact cover of $[a, b]$, and

$$
\begin{aligned}
\mathcal{U}(f ; \mathcal{C})-\mathcal{L}(f ; \mathcal{C}) & =\sum_{I \in \mathcal{G}}\left(\sup _{x \in I} f(x)-\inf _{x \in I} f(x)\right) \operatorname{vol}(I)+\sum_{I \in \mathcal{B}}\left(\sup _{x \in I} f(x)-\inf _{x \in I} f(x)\right) \operatorname{vol}(I) \\
& <\varepsilon(b-a)+2\|f\|_{u} \varepsilon
\end{aligned}
$$

where, $\|f\|_{u}=\sup _{x \in[a, b]}|f(x)|$. By exercise 2 above, it follows that f is Riemann integrable.

