Universiteit Utrecht

Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Measure and Integration Exercises 11

- 1. Let (E, \mathcal{B}, μ) be a measure space, and $f_n : E \to \mathbb{R}$ a sequence of measurable real valued functions on (E, \mathcal{B}, μ) .
 - (a) Suppose $f: E \to \mathbb{R}$ is measurable. Show that

$$\{x \in E : \lim_{n \to \infty} f_n(x) \neq f(x)\} = \bigcup_{l=1}^{\infty} \bigcap_{m=1}^{\infty} \{x \in E : \sup_{n \ge m} |f_n(x) - f(x)| \ge 1/l\}.$$

(b) Show that if $f_n \to f \ \mu$ a.e., then for every $\epsilon > 0$

$$\mu(\bigcap_{m=1}^{\infty} \{x \in E : \sup_{n \ge m} |f_n(x) - f(x)| \ge \epsilon\}) = 0.$$

Proof (a) Let $B = \{x \in E : \lim_{n \to \infty} f_n(x) \neq f(x)\}$ and suppose $x \in B$. Then, there exists $\epsilon > 0$ such that for every $m \ge 1$, there exists an $n \ge m$ such that $|f_n(x) - f(x)| \ge \epsilon$. This implies that for each $m \ge 1$, one has $\sup_{n \ge m} |f_n(x) - f(x)| \ge \epsilon$. Furtheremore, there exists $l \ge 1$ such that $1/l < \epsilon$, then for each $m \ge 1$, $\sup_{n \ge m} |f_n(x) - f(x)| \le \epsilon$.

$$|f(x)| \ge \epsilon > 1/l$$
. Thus,

$$x \in \bigcap_{m=1}^{\infty} \{x \in E : \sup_{n \ge m} |f_n(x) - f(x)| \ge 1/l\} \subseteq \bigcup_{l=1}^{\infty} \bigcap_{m=1}^{\infty} \{x \in E : \sup_{n \ge m} |f_n(x) - f(x)| \ge 1/l\}.$$

Conversely, let $x \in \bigcup_{l=1}^{\infty} \bigcap_{m=1}^{\infty} \{x \in E : \sup_{n \ge m} |f_n(x) - f(x)| \ge 1/l\}$, then there exists $l \ge 1$ so that for all $m \ge 1$, $\sup_{n \ge m} |f_n(x) - f(x)| \ge 1/l$. Then for any $0 < \epsilon < 1/l$, one has $\sup_{n \ge m} |f_n(x) - f(x)| > \epsilon$. In other words, for each $m \ge 1$ there exists $n \ge m$ such that $|f_n(x) - f(x)| \ge \epsilon$. Hence, $x \in B$.

Proof (b) If $f_n \to f \ \mu$ a.e, then $\mu(B) = 0$. Hence, by part (a) one has $\mu(\bigcap_{m=1}^{\infty} \{x \in E : \sup_{n \ge m} |f_n(x) - f(x)| \ge 1/l\}) = 0$ for each $l \ge 1$. But for any $\epsilon > 0$, there exists an $l \ge 1$ such that $1/l < \epsilon$, then

$$\mu(\bigcap_{m=1}^{\infty} \{x \in E : \sup_{n \ge m} |f_n(x) - f(x)| \ge \epsilon\}) \le \mu(\bigcap_{m=1}^{\infty} \{x \in E : \sup_{n \ge m} |f_n(x) - f(x)| \ge 1/l\}) = 0$$

- 2. Consider the measure space $([0, 1), \mathcal{B}_{[0,1)}, \lambda_{[0,1)})$, where $\mathcal{B}_{[0,1)}$ and $\lambda_{[0,1)}$ are the restrictions of the Borel σ -algebra and Lebesgue measure on [0, 1). Define a sequence of measurable functions f_n on [0, 1) as follows: given $n \ge 1$, there exist an $m \ge 0$ and $0 \le l \le 2^m - 1$ such that $n = 2^m + l$ (note that this representation is unique). Set $f_n = f_{2^m+l} = \mathbb{1}_{[l/2^m, (l+1)/2^m)}$.
 - (a) Determine explicitly $f_1, f_2, f_3, f_4, f_5, f_6, f_7$.
 - (b) Show that $\limsup f_n(x) = 1$ for all $x \in [0, 1]$.
 - (c) Show that $\lim_{n\to\infty} ||f||_{L^1(\lambda_{[0,1]})} = 0$. Conclude that L^1 -convergence does not imply μ a.e. convergence.

Proof (a) Notice that $1 = 2^0 + 0$, $2 = 2^1 + 0$, $3 = 2^1 + 1$, $4 = 2^2 + 0$, $5 = 2^2 + 1$, $6 = 2^2 + 2$, $7 = 2^2 + 3$. Thus, $f_1 = 1_{[0,1)}$, $f_2 = 1_{[0,1/2)}$, $f_3 = 1_{[1/2,1)}$, $f_4 = 1_{[0,1/4)}$, $f_5 = 1_{[1/4,2/4)}$, $f_6 = 1_{[2/4,3/4)}$, $f_7 = 1_{[3/4,1)}$.

Proof (b) Notice that for each $m \ge 1$, $\{[l/2^m, (l+1)/2^m) : 0 \le l \le 2^m - 1\}$ forms a partition of [0, 1). Hence, for each $x \in [0, 1)$ and for every $m \ge 0$ there exists an $0 \le l \le 2^m - 1$ such that $f_{2^m+l}(x) = 1$. Thus $f_n(x) = 1$ for infinitely many n. This shows that $\limsup_{n \to \infty} f_n(x) = 1$ for all $x \in [0, 1]$.

Proof (c) If $n = 2^m + l$, then $||f_n||_{L^1(\lambda_{[0,1)})} = \int_{[0,1)} f_{2^m+l} d\lambda_{[0,1)} = 1/2^m$. Since $m \to \infty$ as $n \to \infty$, taking limits we see that $\lim_{n\to\infty} ||f||_{L^1(\lambda_{[0,1)})} = 0$. This shows that $f_n \to 0$ in $L^1(\lambda_{[0,1)})$ but from part (b), f_n **does not** converge to 0 μ a.e.

3. Consider the measure space $([a, b], \mathcal{B}, \lambda)$, where \mathcal{B} is the Borel σ -algebra on [a, b], and λ is the restriction of the Lebesgue measure on [a, b]. Let $f : [a, b] \to \mathbb{R}$ be any continuous function. Show that the Riemann integral of f on [a, b] is equal to the Lebesgue integral of f on [a, b], i.e.

$$(R) \int_{a}^{b} f(x)dx = \int_{[a,b]} fd\lambda.$$

Proof Since f is continuous, then f is Riemann integrable on [a, b]. For each $n \ge 1$, divide the interval [a, b] into 2^n intervals of equal length $I_0^{(n)}, I_1^{(n)}, \dots, I_{2^n-1}^{(n)}$, where

$$I_j^{(n)} = \left[a + \frac{j(b-a)}{2^n}, a + \frac{(j+1)(b-a)}{2^n}\right]$$

Let $\mathcal{C}^{(n)} = \{I_j^{(n)} : 0 \leq j \leq 2^n - 1.\}$. Notice that $\mathcal{C}^{(n+1)}$ is a refinement of $\mathcal{C}^{(n)}$, and $||\mathcal{C}^{(n)}|| = \frac{1}{2^n} \to 0$ as $n \to \infty$. For each n, define the choice function $\xi^{(n)}$ by $\xi^{(n)}(I_j^{(n)}) = a + \frac{j(b-a)}{2^n}$. Then,

$$\mathcal{R}(f;\mathcal{C}^{(n)},\xi^{(n)}) = \sum_{j=0}^{2^n-1} f(a + \frac{j(b-a)}{2^n}) \cdot \frac{1}{2^n}.$$

By Riemann integrability of f we have

$$\lim_{n \to \infty} \sum_{j=0}^{2^n - 1} f(a + \frac{j(b-a)}{2^n}) \cdot \frac{1}{2^n} = \lim_{n \to \infty} \mathcal{R}(f; \mathcal{C}^{(n)}, \xi^{(n)}) = (R) \int_a^b f(x) dx.$$

Now, let $f_n = \sum_{j=0}^{2^n-1} f(a + \frac{j(b-a)}{2^n}) \cdot 1_{I_j^{(n)}}$, then $|f_n| \leq ||f||_u$ for all n. By uniform continuity of f, given any $\epsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$, $x, y \in [a, b]$. Moreover, there exists an integer $N \geq 1$ such that $\frac{1}{2^n} < \delta$ for all $n \geq N$. Thus, if $n \geq N$, then $|f_n(x) - f(x)| < \epsilon$ for all $x \in [a, b]$. This implies that $f_n \to f$ pointwise on [a, b]. Since f is bounded, then $\int_{[a,b]} |f| d\lambda \leq ||f||_u (b-a)$, and hence f is λ -integrable. By the Lebesgue Dominated Convergence Theorem,

$$\int_{[a,b]} f d\lambda = \lim_{n \to \infty} \int_{[a,b]} f_n d\lambda = \lim_{n \to \infty} \sum_{j=0}^{2^n - 1} f(a + \frac{j(b-a)}{2^n}) \cdot \frac{1}{2^n} = (R) \int_a^b f(x) dx.$$

4. Let (E, \mathcal{B}, μ) be a measure space, and $f_n : E \to \mathbb{R}$ a sequence of measurable real valued functions on (E, \mathcal{B}, μ) . Let $f : E \to \mathbb{R}$ be a measurable function such that $\sum_{n=0}^{\infty} \mu(|f - f_n| \ge \epsilon)) < \infty$ for all $\epsilon > 0$. Show that $f_n \to f$ in μ -measure and μ a.e.

Proof. Let $\epsilon > 0$ be given. For any $0 < \epsilon' < \epsilon$, and any integer $m \ge 1$,

$$\mu(\sup_{n \ge m} |f - f_n| \ge \epsilon) \le \mu\left(\bigcup_{n=m}^{\infty} \{|f - f_n|\} \ge \epsilon'\right) \le \sum_{n=m}^{\infty} \mu(|f - f_n| \ge \epsilon')$$

Since $\lim_{m\to\infty} \sum_{n=m}^{\infty} \mu(|f - f_n| \ge \epsilon') = 0$, it follows that

$$\lim_{m \to \infty} \mu(\sup_{n \ge m} |f - f_n| \ge \epsilon) = 0.$$

By Theorem 3.3.7, $f_n \to f$ in μ -measure and μ a.e.