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Measure and Integration Exercises 11

1. Let (E,B, µ) be a measure space, and fn : E → R a sequence of measurable real
valued functions on (E,B, µ).

(a) Suppose f : E → R is measurable. Show that

{x ∈ E : lim
n→∞

fn(x) 6= f(x)} =

∞
⋃

l=1

∞
⋂

m=1

{x ∈ E : sup
n≥m

|fn(x) − f(x)| ≥ 1/l}.

(b) Show that if fn → f µ a.e., then for every ε > 0

µ(

∞
⋂

m=1

{x ∈ E : sup
n≥m

|fn(x) − f(x)| ≥ ε}) = 0.

Proof (a) Let B = {x ∈ E : limn→∞ fn(x) 6= f(x)} and suppose x ∈ B. Then,
there exists ε > 0 such that for every m ≥ 1, there exists an n ≥ m such that
|fn(x)−f(x)| ≥ ε. This implies that for each m ≥ 1, one has sup

n≥m
|fn(x)−f(x)| ≥ ε.

Furtheremore, there exists l ≥ 1 such that 1/l < ε, then for each m ≥ 1, sup
n≥m

|fn(x)−

f(x)| ≥ ε > 1/l. Thus,

x ∈
∞
⋂

m=1

{x ∈ E : sup
n≥m

|fn(x)−f(x)| ≥ 1/l} ⊆
∞
⋃

l=1

∞
⋂

m=1

{x ∈ E : sup
n≥m

|fn(x)−f(x)| ≥ 1/l}.

Conversely, let x ∈
⋃∞

l=1

⋂∞

m=1{x ∈ E : supn≥m |fn(x) − f(x)| ≥ 1/l}, then there
exists l ≥ 1 so that for all m ≥ 1, sup

n≥m
|fn(x)−f(x)| ≥ 1/l. Then for any 0 < ε < 1/l,

one has supn≥m |fn(x)−f(x)| > ε. In other words, for each m ≥ 1 there exists n ≥ m
such that |fn(x) − f(x)| ≥ ε. Hence, x ∈ B.

Proof (b) If fn → f µ a.e, then µ(B) = 0. Hence, by part (a) one has µ(
⋂∞

m=1{x ∈
E : supn≥m |fn(x)−f(x)| ≥ 1/l}) = 0 for each l ≥ 1. But for any ε > 0, there exists
an l ≥ 1 such that 1/l < ε, then

µ(
∞
⋂

m=1

{x ∈ E : sup
n≥m

|fn(x)−f(x)| ≥ ε}) ≤ µ(
∞
⋂

m=1

{x ∈ E : sup
n≥m

|fn(x)−f(x)| ≥ 1/l}) = 0

.
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2. Consider the measure space ([0, 1),B[0,1), λ[0,1)), where B[0,1) and λ[0,1) are the re-
strictions of the Borel σ-algebra and Lebesgue measure on [0, 1). Define a sequence
of measurable functions fn on [0, 1) as follows: given n ≥ 1, there exist an m ≥ 0
and 0 ≤ l ≤ 2m − 1 such that n = 2m + l (note that this representation is unique).
Set fn = f2m+l = 1[l/2m,(l+1)/2m).

(a) Determine explicitly f1, f2, f3, f4, f5, f6, f7.

(b) Show that lim sup
n→∞

fn(x) = 1 for all x ∈ [0, 1].

(c) Show that lim
n→∞

||f ||L1(λ[0,1]) = 0. Conclude that L1-convergence does not imply
µ a.e. convergence.

Proof (a) Notice that 1 = 20 +0, 2 = 21 +0, 3 = 21 +1, 4 = 22 +0, 5 = 22 +1, 6 =
22 + 2, 7 = 22 + 3. Thus, f1 = 1[0,1), f2 = 1[0,1/2), f3 = 1[1/2,1), f4 = 1[0,1/4), f5 =
1[1/4,2/4), f6 = 1[2/4,3/4), f7 = 1[3/4,1).

Proof (b) Notice that for each m ≥ 1, {[l/2m, (l + 1)/2m) : 0 ≤ l ≤ 2m − 1} forms
a partition of [0, 1). Hence, for each x ∈ [0, 1) and for every m ≥ 0 there exists an
0 ≤ l ≤ 2m − 1 such that f2m+l(x) = 1. Thus fn(x) = 1 for infinitely many n. This
shows that lim sup

n→∞

fn(x) = 1 for all x ∈ [0, 1].

Proof (c) If n = 2m+l, then ||fn||L1(λ[0,1)) =
∫

[0,1)
f2m+ldλ[0,1) = 1/2m. Since m → ∞

as n → ∞, taking limits we see that lim
n→∞

||f ||L1(λ[0,1)) = 0. This shows that fn → 0

in L1(λ[0,1)) but from part (b), fn does not converge to 0 µ a.e.

3. Consider the measure space ([a, b],B, λ), where B is the Borel σ-algebra on [a, b],
and λ is the restriction of the Lebesgue measure on [a, b]. Let f : [a, b] → R be any
continuous function. Show that the Riemann integral of f on [a, b] is equal to the
Lebesgue integral of f on [a, b], i.e.

(R)

∫ b

a

f(x)dx =

∫

[a,b]

fdλ.

Proof Since f is continuous, then f is Riemann integrable on [a, b]. For each n ≥ 1,

divide the interval [a, b] into 2n intervals of equal length I
(n)
0 , I

(n)
1 , · · · , I

(n)
2n−1, where

I
(n)
j =

[

a +
j(b − a)

2n
, a +

(j + 1)(b − a)

2n

]

.

Let C(n) = {I
(n)
j : 0 ≤ j ≤ 2n − 1.}. Notice that C(n+1) is a refinement of C(n),

and ||C(n)|| =
1

2n
→ 0 as n → ∞. For each n, define the choice fuction ξ(n) by

ξ(n)(I
(n)
j ) = a + j(b−a)

2n . Then,

R(f ; C(n), ξ(n)) =
2n−1
∑

j=0

f(a +
j(b − a)

2n
) ·

1

2n
.
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By Riemann integrability of f we have

lim
n→∞

2n−1
∑

j=0

f(a +
j(b − a)

2n
) ·

1

2n
= lim

n→∞
R(f ; C(n), ξ(n)) = (R)

∫ b

a

f(x)dx.

Now, let fn =
∑2n−1

j=0 f(a + j(b−a)
2n ) · 1

I
(n)
j

, then |fn| ≤ ||f ||u for all n. By uniform

continuity of f , given any ε > 0, there exists a δ > 0 such that |f(x) − f(y)| < ε
whenever |x − y| < δ, x, y ∈ [a, b]. Moreover, there exists an integer N ≥ 1 such

that
1

2n
< δ for all n ≥ N. Thus, if n ≥ N , then |fn(x) − f(x)| < ε for all

x ∈ [a, b]. This implies that fn → f pointwise on [a, b]. Since f is bounded, then
∫

[a,b]
|f |dλ ≤ ||f ||u(b− a), and hence f is λ-integrable. By the Lebesgue Dominated

Convergence Theorem,

∫

[a,b]

fdλ = lim
n→∞

∫

[a,b]

fndλ = lim
n→∞

2n−1
∑

j=0

f(a +
j(b − a)

2n
) ·

1

2n
= (R)

∫ b

a

f(x)dx.

4. Let (E,B, µ) be a measure space, and fn : E → R a sequence of measurable real
valued functions on (E,B, µ). Let f : E → R be a measurable function such that
∑∞

n=0 µ(|f − fn| ≥ ε)) < ∞ for all ε > 0. Show that fn → f in µ-measure and µ a.e.

Proof. Let ε > 0 be given. For any 0 < ε′ < ε, and any integer m ≥ 1,

µ(sup
n≥m

|f − fn| ≥ ε) ≤ µ

(

∞
⋃

n=m

{|f − fn|} ≥ ε′

)

≤

∞
∑

n=m

µ(|f − fn| ≥ ε′).

Since limm→∞

∑∞

n=m µ(|f − fn| ≥ ε′) = 0, it follows that

lim
m→∞

µ(sup
n≥m

|f − fn| ≥ ε) = 0.

By Theorem 3.3.7, fn → f in µ-measure and µ a.e.
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