Measure and Integration Exercises 11

1. Let (E, \mathcal{B}, μ) be a measure space, and $f_{n}: E \rightarrow \mathbb{R}$ a sequence of measurable real valued functions on (E, \mathcal{B}, μ).
(a) Suppose $f: E \rightarrow \mathbb{R}$ is measurable. Show that

$$
\left\{x \in E: \lim _{n \rightarrow \infty} f_{n}(x) \neq f(x)\right\}=\bigcup_{l=1}^{\infty} \bigcap_{m=1}^{\infty}\left\{x \in E: \sup _{n \geq m}\left|f_{n}(x)-f(x)\right| \geq 1 / l\right\} .
$$

(b) Show that if $f_{n} \rightarrow f \mu$ a.e., then for every $\epsilon>0$

$$
\mu\left(\bigcap_{m=1}^{\infty}\left\{x \in E: \sup _{n \geq m}\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)=0
$$

Proof (a) Let $B=\left\{x \in E: \lim _{n \rightarrow \infty} f_{n}(x) \neq f(x)\right\}$ and suppose $x \in B$. Then, there exists $\epsilon>0$ such that for every $m \geq 1$, there exists an $n \geq m$ such that $\left|f_{n}(x)-f(x)\right| \geq \epsilon$. This implies that for each $m \geq 1$, one has $\sup _{n \geq m}\left|f_{n}(x)-f(x)\right| \geq \epsilon$. Furtheremore, there exists $l \geq 1$ such that $1 / l<\epsilon$, then for each $m \geq 1, \sup _{n \geq m} \mid f_{n}(x)-$ $f(x) \mid \geq \epsilon>1 / l$. Thus,
$x \in \bigcap_{m=1}^{\infty}\left\{x \in E: \sup _{n \geq m}\left|f_{n}(x)-f(x)\right| \geq 1 / l\right\} \subseteq \bigcup_{l=1}^{\infty} \bigcap_{m=1}^{\infty}\left\{x \in E: \sup _{n \geq m}\left|f_{n}(x)-f(x)\right| \geq 1 / l\right\}$.
Conversely, let $x \in \bigcup_{l=1}^{\infty} \bigcap_{m=1}^{\infty}\left\{x \in E: \sup _{n \geq m}\left|f_{n}(x)-f(x)\right| \geq 1 / l\right\}$, then there exists $l \geq 1$ so that for all $m \geq 1, \sup _{n \geq m}\left|f_{n}(x)-f(x)\right| \geq 1 / l$. Then for any $0<\epsilon<1 / l$, one has $\sup _{n \geq m}\left|f_{n}(x)-f(x)\right|>\epsilon$. In other words, for each $m \geq 1$ there exists $n \geq m$ such that $\left|f_{n}(x)-f(x)\right| \geq \epsilon$. Hence, $x \in B$.

Proof (b) If $f_{n} \rightarrow f \mu$ a.e, then $\mu(B)=0$. Hence, by part (a) one has $\mu\left(\bigcap_{m=1}^{\infty}\{x \in\right.$ $\left.\left.E: \sup _{n \geq m}\left|f_{n}(x)-f(x)\right| \geq 1 / l\right\}\right)=0$ for each $l \geq 1$. But for any $\epsilon>0$, there exists an $l \geq 1$ such that $1 / l<\epsilon$, then
$\mu\left(\bigcap_{m=1}^{\infty}\left\{x \in E: \sup _{n \geq m}\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right) \leq \mu\left(\bigcap_{m=1}^{\infty}\left\{x \in E: \sup _{n \geq m}\left|f_{n}(x)-f(x)\right| \geq 1 / l\right\}\right)=0$
2. Consider the measure space $\left([0,1), \mathcal{B}_{[0,1)}, \lambda_{[0,1)}\right)$, where $\mathcal{B}_{[0,1)}$ and $\lambda_{[0,1)}$ are the restrictions of the Borel σ-algebra and Lebesgue measure on $[0,1)$. Define a sequence of measurable functions f_{n} on $[0,1)$ as follows: given $n \geq 1$, there exist an $m \geq 0$ and $0 \leq l \leq 2^{m}-1$ such that $n=2^{m}+l$ (note that this representation is unique). Set $f_{n}=f_{2^{m}+l}=1_{\left[l / 2^{m},(l+1) / 2^{m}\right)}$.
(a) Determine explicitly $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}$.
(b) Show that $\limsup _{n \rightarrow \infty} f_{n}(x)=1$ for all $x \in[0,1]$.
(c) Show that $\lim _{n \rightarrow \infty}\|f\|_{L^{1}\left(\lambda_{[0,1]}\right)}=0$. Conclude that L^{1}-convergence does not imply μ a.e. convergence.

Proof (a) Notice that $1=2^{0}+0,2=2^{1}+0,3=2^{1}+1,4=2^{2}+0,5=2^{2}+1,6=$ $2^{2}+2,7=2^{2}+3$. Thus, $f_{1}=1_{[0,1)}, f_{2}=1_{[0,1 / 2)}, f_{3}=1_{[1 / 2,1)}, f_{4}=1_{[0,1 / 4)}, f_{5}=$ $1_{[1 / 4,2 / 4)}, f_{6}=1_{[2 / 4,3 / 4)}, f_{7}=1_{[3 / 4,1)}$.

Proof (b) Notice that for each $m \geq 1,\left\{\left[l / 2^{m},(l+1) / 2^{m}\right): 0 \leq l \leq 2^{m}-1\right\}$ forms a partition of $[0,1)$. Hence, for each $x \in[0,1)$ and for every $m \geq 0$ there exists an $0 \leq l \leq 2^{m}-1$ such that $f_{2^{m}+l}(x)=1$. Thus $f_{n}(x)=1$ for infinitely many n. This shows that $\limsup _{n \rightarrow \infty} f_{n}(x)=1$ for all $x \in[0,1]$.

Proof (c) If $n=2^{m}+l$, then $\left\|f_{n}\right\|_{L^{1}\left(\lambda_{[0,1)}\right)}=\int_{[0,1)} f_{2^{m}+l} d \lambda_{[0,1)}=1 / 2^{m}$. Since $m \rightarrow \infty$ as $n \rightarrow \infty$, taking limits we see that $\lim _{n \rightarrow \infty}\|f\|_{L^{1}\left(\lambda_{(0,1)}\right)}=0$. This shows that $f_{n} \rightarrow 0$ in $L^{1}\left(\lambda_{[0,1)}\right)$ but from part (b), f_{n} does not converge to 0μ a.e.
3. Consider the measure space $([a, b], \mathcal{B}, \lambda)$, where \mathcal{B} is the Borel σ-algebra on $[a, b]$, and λ is the restriction of the Lebesgue measure on $[a, b]$. Let $f:[a, b] \rightarrow \mathbb{R}$ be any continuous function. Show that the Riemann integral of f on $[a, b]$ is equal to the Lebesgue integral of f on $[a, b]$, i.e.

$$
\text { (R) } \int_{a}^{b} f(x) d x=\int_{[a, b]} f d \lambda \text {. }
$$

Proof Since f is continuous, then f is Riemann integrable on $[a, b]$. For each $n \geq 1$, divide the interval $[a, b]$ into 2^{n} intervals of equal length $I_{0}^{(n)}, I_{1}^{(n)}, \cdots, I_{2^{n}-1}^{(n)}$, where

$$
I_{j}^{(n)}=\left[a+\frac{j(b-a)}{2^{n}}, a+\frac{(j+1)(b-a)}{2^{n}}\right] .
$$

Let $\mathcal{C}^{(n)}=\left\{I_{j}^{(n)}: 0 \leq j \leq 2^{n}-1.\right\}$. Notice that $\mathcal{C}^{(n+1)}$ is a refinement of $\mathcal{C}^{(n)}$, and $\left\|\mathcal{C}^{(n)}\right\|=\frac{1}{2^{n}} \rightarrow 0$ as $n \rightarrow \infty$. For each n, define the choice fuction $\xi^{(n)}$ by $\xi^{(n)}\left(I_{j}^{(n)}\right)=a+\frac{j(b-a)}{2^{n}}$. Then,

$$
\mathcal{R}\left(f ; \mathcal{C}^{(n)}, \xi^{(n)}\right)=\sum_{j=0}^{2^{n}-1} f\left(a+\frac{j(b-a)}{2^{n}}\right) \cdot \frac{1}{2^{n}} .
$$

By Riemann integrability of f we have

$$
\lim _{n \rightarrow \infty} \sum_{j=0}^{2^{n}-1} f\left(a+\frac{j(b-a)}{2^{n}}\right) \cdot \frac{1}{2^{n}}=\lim _{n \rightarrow \infty} \mathcal{R}\left(f ; \mathcal{C}^{(n)}, \xi^{(n)}\right)=(R) \int_{a}^{b} f(x) d x
$$

Now, let $f_{n}=\sum_{j=0}^{2^{n}-1} f\left(a+\frac{j(b-a)}{2^{n}}\right) \cdot 1_{I_{j}^{(n)}}$, then $\left|f_{n}\right| \leq\|f\|_{u}$ for all n. By uniform continuity of f, given any $\epsilon>0$, there exists a $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ whenever $|x-y|<\delta, x, y \in[a, b]$. Moreover, there exists an integer $N \geq 1$ such that $\frac{1}{2^{n}}<\delta$ for all $n \geq N$. Thus, if $n \geq N$, then $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in[a, b]$. This implies that $f_{n} \rightarrow f$ pointwise on $[a, b]$. Since f is bounded, then $\int_{[a, b]}|f| d \lambda \leq\|f\|_{u}(b-a)$, and hence f is λ-integrable. By the Lebesgue Dominated Convergence Theorem,

$$
\int_{[a, b]} f d \lambda=\lim _{n \rightarrow \infty} \int_{[a, b]} f_{n} d \lambda=\lim _{n \rightarrow \infty} \sum_{j=0}^{2^{n}-1} f\left(a+\frac{j(b-a)}{2^{n}}\right) \cdot \frac{1}{2^{n}}=(R) \int_{a}^{b} f(x) d x .
$$

4. Let (E, \mathcal{B}, μ) be a measure space, and $f_{n}: E \rightarrow \mathbb{R}$ a sequence of measurable real valued functions on (E, \mathcal{B}, μ). Let $f: E \rightarrow \mathbb{R}$ be a measurable function such that $\left.\sum_{n=0}^{\infty} \mu\left(\left|f-f_{n}\right| \geq \epsilon\right)\right)<\infty$ for all $\epsilon>0$. Show that $f_{n} \rightarrow f$ in μ-measure and μ a.e.

Proof. Let $\epsilon>0$ be given. For any $0<\epsilon^{\prime}<\epsilon$, and any integer $m \geq 1$,

$$
\mu\left(\sup _{n \geq m}\left|f-f_{n}\right| \geq \epsilon\right) \leq \mu\left(\bigcup_{n=m}^{\infty}\left\{\left|f-f_{n}\right|\right\} \geq \epsilon^{\prime}\right) \leq \sum_{n=m}^{\infty} \mu\left(\left|f-f_{n}\right| \geq \epsilon^{\prime}\right)
$$

Since $\lim _{m \rightarrow \infty} \sum_{n=m}^{\infty} \mu\left(\left|f-f_{n}\right| \geq \epsilon^{\prime}\right)=0$, it follows that

$$
\lim _{m \rightarrow \infty} \mu\left(\sup _{n \geq m}\left|f-f_{n}\right| \geq \epsilon\right)=0 .
$$

By Theorem 3.3.7, $f_{n} \rightarrow f$ in μ-measure and μ a.e.

