Measure and Integration Solutions 12

1. Let (E, \mathcal{B}, μ) be a measure space, and $f_{n}: E \rightarrow \mathbb{R}$ a sequence of measurable real valued functions on (E, \mathcal{B}, μ). Suppose $f, g: E \rightarrow \mathbb{R}$ are measurable functions such that $f_{n} \rightarrow f$ in μ-measure and $f_{n} \rightarrow g \mu$ a.e. Show that $f=g \mu$ a.e.

Proof Since $f_{n} \rightarrow f$ in μ-measure, then by Theorem 3.3.10, there exists a subsequence $\left(f_{n_{j}}\right)$ such that $f_{n_{j}} \rightarrow f \mu$ a.e. Furthermore, $f_{n} \rightarrow g \mu$ a.e. implies $f_{n_{j}} \rightarrow g$ μ a.e. Let $A=\left\{x \in E: \lim _{j \rightarrow \infty} f_{n_{j}}(x)=f(x)\right\}$ and $B=\left\{x \in E: \lim _{j \rightarrow \infty} f_{n_{j}}(x)=\right.$ $g(x)\}$. Then $\mu\left(A^{c}\right)=\mu\left(B^{c}\right)=0$. For each $x \in A \cap B$, we have $f(x)=g(x)$ (since limits of real valued sequences are unique), and $\mu\left((A \cap B)^{c}\right) \leq \mu\left(A^{c}\right)+\mu\left(B^{c}\right)=0$, it follows that $f=g \mu$ a.e.
2. Consider the measure space $([0, \infty), \mathcal{B}, \lambda)$, where \mathcal{B} and λ are the restriction of the Borel σ-algebra and Lebesgue measure to the interval $[0, \infty)$. Define $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ by

$$
f_{n}(x)= \begin{cases}1 & \text { if } n \leq x \leq n+\frac{1}{n} \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Prove that $f_{n} \rightarrow 0 \lambda$ a.e. and in λ-measure.
(b) Prove that condition (3.3.8) of Theorem 3.3.7 does not hold, λ i.e. it is not true that

$$
\lim _{m \rightarrow \infty} \lambda\left(\sup _{n \geq m}\left|f_{n}\right| \geq \epsilon\right)=0 \text { for all } \epsilon>0
$$

Proof (a) For any $x \geq 0$, there exists an integer N such that $x<N$. Then, for any $n \geq N, x \notin[n, n+1 / n]$ and hence $f_{n}(x)=0$ for all $n \geq N$. This show that $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for all $x \geq 0$, in particular, λ a.e.. Now, for any $\epsilon>0$,

$$
\lambda\left(\left|f_{n}\right| \geq \epsilon\right)=\lambda([n, n+1 / n])=1 / n \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Thus, $f_{n} \rightarrow 0$ in λ measure
Proof (b) For any $m \geq 1$,

$$
\lambda\left(\sup _{n \geq m}\left|f_{n}\right| \geq \epsilon\right)=\lambda\left(\bigcup_{n=m}^{\infty}[n, n+1 / n]\right)=\sum_{n=m}^{\infty} 1 / n=\infty .
$$

So, condition (3.3.8) of Theorem 3.3.7 does not hold.
3. Let (E, \mathcal{B}, μ) be a measure space, and $f_{n}: E \rightarrow \mathbb{R}$ a sequence of measurable real valued functions on (E, \mathcal{B}, μ). Let $\left(\epsilon_{n}\right)$ be a sequence of positive real numbers such that $\sum_{n} \epsilon_{n}<\infty$. Prove that if $\left.\sum_{n=0}^{\infty} \mu\left(\left|f_{n+1}-f_{n}\right| \geq \epsilon_{n}\right)\right)<\infty$, then there exists a measurable function $g: E \rightarrow R$ such that $f_{n} \rightarrow g$ in μ-measure and μ a.e.

Proof Let $\epsilon>0$. There exists an integer $N \geq 1$ such that $\sum_{n=m}^{\infty} \epsilon_{n}<\epsilon$ for all $m \geq N$. We first show that for any $m \geq N$ if $\sup _{n \geq m}\left|f_{n}(x)-f_{m}(x)\right|>\epsilon$, then $\left|f_{n+1}(x)-f_{n}(x)\right| \geq \epsilon_{n}$ for some $n \geq m$. This is proved by contradiction. Assume that $\sup _{n \geq m}\left|f_{n}(x)-f_{m}(x)\right|>\epsilon$ but $\left|f_{n+1}(x)-f_{n}(x)\right|<\epsilon_{n}$ for all $n \geq m$. Then there exists an integer $n_{0} \geq m$ such that $\left|f_{n_{0}}(x)-f_{m}(x)\right|>\epsilon$. Then,

$$
\epsilon<\left|f_{n_{0}}(x)-f_{m}(x)\right| \leq \sum_{n=m}^{n_{0}-1}\left|f_{n+1}(x)-f_{n}(x)\right|<\sum_{n=m}^{n_{0}-1} \epsilon_{n}<\sum_{n=m}^{\infty} \epsilon_{n}<\epsilon
$$

which is a contradiction. Hence, for all $m \geq N$,

$$
\mu\left(\sup _{n \geq m}\left|f_{n}-f_{m}\right| \geq \epsilon\right) \leq \mu\left(\bigcup_{n=m}^{\infty}\left\{\left|f_{n+1}-f_{n}\right| \geq \epsilon_{n}\right\}\right) \leq \sum_{n=m}^{\infty} \mu\left(\left|f_{n+1}-f_{n}\right| \geq \epsilon_{n}\right)
$$

This shows that

$$
\lim _{m \rightarrow \infty} \mu\left(\sup _{n \geq m}\left|f_{n}-f_{m}\right| \geq \epsilon\right) \leq \lim _{m \rightarrow \infty} \sum_{n=m}^{\infty} \mu\left(\left|f_{n+1}-f_{n}\right| \geq \epsilon_{n}\right)=0
$$

By Theorem 3.3.7, there exists a measurable function $g: E \rightarrow R$ such that $f_{n} \rightarrow g$ in μ-measure and μ a.e.
4. Let f and $\left\{f_{n}\right\}$ be measurable real valued functions on a measure space (E, \mathcal{B}, μ) such that $f_{n} \rightarrow f$ in μ-measure, and $\sup _{n \geq 1}\left\|f_{n}\right\|_{L^{1}(\mu)}<\infty$. Show that f is μ integrable, and

$$
\lim _{n \rightarrow \infty}| |\left|f_{n}\left\|_{L^{1}(\mu)}-\right\| f\right|_{L^{1}(\mu)}-\left|\left|f_{n}-f\right|_{L^{1}(\mu)}\right|=\left\|\left|f_{n}\right|-|f|-\left|f_{n}-f\right|\right\|_{L^{1}(\mu)}=0
$$

Conclude that if $\left\|f_{n}\right\|_{L^{1}(\mu)} \rightarrow\|f\|_{L^{1}(\mu)} \in \mathbb{R}$, then $\left\|f_{n}-f\right\|_{L^{1}(\mu)} \rightarrow 0$.
Proof Choose a subsequence $\left\{f_{n_{m}}\right\}$ such that

$$
\lim _{m \rightarrow \infty}| |\left|f_{n_{m}}\right|-|f|-\left|f_{n_{m}}-f\right|\left\|_{L^{1}(\mu)}=\limsup _{n \rightarrow \infty}\right\|\left|f_{n}\right|-|f|-\left|f_{n}-f\right| \|_{L^{1}(\mu)}
$$

Since $f_{n_{m}} \rightarrow f$ in μ-measure, it follows from Theorem 3.3.10 that there exists a subsequence $\left\{f_{n_{m_{i}}}\right\}$ of $\left\{f_{n_{m}}\right\}$ such that $f_{n_{m_{i}}} \rightarrow f \mu$ a.e. Then by Fatou's Lemma,

$$
\int|f| d \mu=\int \liminf _{i \rightarrow \infty}\left|f_{n_{m_{i}}}\right| d \mu \leq \liminf _{i \rightarrow \infty} \int\left|f_{n_{m_{i}}}\right| d \mu \leq \sup _{n} \int\left|f_{n}\right| d \mu<\infty
$$

Thus, f is μ-integrable. By Theorem 3.3.5,

$$
\limsup _{n \rightarrow \infty}\left\|\left|f_{n}\right|-|f|-\left|f_{n}-f\right|\right\|_{L^{1}(\mu)}=\lim _{i \rightarrow \infty}\left|\left\|\left|f_{n_{m_{i}}}\right|-|f|-\left|f_{n_{m_{i}}}-f\right|\right\|_{L^{1}(\mu)}=0 .\right.
$$

Thus, $\lim _{n \rightarrow \infty}| |\left|f_{n}\right|-|f|-\left|f_{n}-f\right| \|_{L^{1}(\mu)}=0$. Since

$$
\left|\left|\left|f_{n}\left\|_{L^{1}(\mu)}-\right\| f\left\|_{L^{1}(\mu)}-\right\| f_{n}-f\left\|_ { L ^ { 1 } (\mu) } \left|\leq\left\|\left|\left|f_{n}\right|-|f|-\left|f_{n}-f\right| \|_{L^{1}(\mu)}\right.\right.\right.\right.\right.\right.\right.
$$

for all n, it follows that
$\lim _{n \rightarrow \infty}| |\left|f_{n}\left\|_{L^{1}(\mu)}-\left|\left|f\left\|_{L^{1}(\mu)}-\left|\left|f_{n}-f\left\|_{L^{1}(\mu)}\left|=\lim _{n \rightarrow \infty}\right|| | f_{n}\left|-|f|-\left|f_{n}-f\right| \|_{L^{1}(\mu)}=0\right.\right.\right.\right.\right.\right.\right.\right.\right.$.
Finally, if $\left\|f_{n}\right\|_{L^{1}(\mu)} \rightarrow\|f\|_{L^{1}(\mu)} \in \mathbb{R}$, then $\left\|f_{n}\right\|_{L^{1}(\mu)}-\|f\|_{L^{1}(\mu)} \rightarrow 0$ and hence $\left\|f_{n}-f\right\|_{L^{1}(\mu)} \rightarrow 0$.

