Measure and Integration Exercises 13

1. Let $\left(E_{1}, \mathcal{B}_{1}, \mu_{1}\right)$ and $\left(E_{2}, \mathcal{B}_{2}, \mu_{2}\right)$ be finite measure spaces. Let $\Gamma \in \mathcal{B}_{1} \times \mathcal{B}_{2}$. For $x_{1} \in E_{1}, x_{2} \in E_{2}$, let $\Gamma\left(x_{1}\right)=\left\{x_{2} \in E_{2}:\left(x_{1}, x_{2}\right) \in \Gamma\right\}$ and $\Gamma\left(x_{2}\right)=\left\{x_{1} \in E_{1}:\right.$ $\left.\left(x_{1}, x_{2}\right) \in \Gamma\right\}$. Let

$$
\mathcal{D}=\left\{\Gamma \in \mathcal{B}_{1} \times \mathcal{B}_{2}: \mu_{2}\left(\Gamma\left(x_{1}\right)\right) \text { and } \mu_{1}\left(\Gamma\left(x_{2}\right)\right) \text { are measurable }\right\} .
$$

Show that \mathcal{D} is a λ-system containing $\mathcal{C}=\left\{\Gamma_{1} \times \Gamma_{2}: \Gamma_{i} \in \mathcal{B}_{i}, i=1,2\right\}$. Conclude that $\mathcal{D}=\mathcal{B}_{1} \times \mathcal{B}_{2}$.

Proof To show \mathcal{D} is a λ-system, we need to check conditions (a)-(d) on page 34. First notice that if $C, D \in \mathcal{B}_{1} \times \mathcal{B}_{2}$, and $x_{1} \in E_{1}$, then $D^{c}\left(x_{1}\right)=\left(D\left(x_{1}\right)\right)^{c}$, $(C \cup D)\left(x_{1}\right)=C\left(x_{1}\right) \cup D\left(x_{1}\right)$, and $(D \backslash C)\left(x_{1}\right)=D\left(x_{1}\right) \backslash C\left(x_{1}\right)$. Similarly, if we replace x_{1} by x_{2}. From this conditions (a) and (b) easily follow. Now suppose $C, D \in \mathcal{D}$ with $C \subseteq D$, then $\mu_{2}\left((D \backslash C)\left(x_{1}\right)\right)=\mu_{2}\left(D\left(x_{1}\right)\right)-\mu_{2}\left(C\left(x_{1}\right)\right)$ is measurable (notice that the difference is well defined since μ_{2} is a finite measure). Similarly, $\mu_{1}((D \backslash$ $\left.C)\left(x_{1}\right)\right)=\mu_{2}\left(D\left(x_{1}\right)\right)-\mu_{2}\left(C\left(x_{1}\right)\right)$. Now, let $D_{1} \subseteq D_{2} \subseteq \cdots$ be a sequence in \mathcal{D}, then for any $x_{1} \in E_{1}$ and $x_{2} \in E_{2}$, one has that $\left(\mu_{2}\left(D_{n}\left(x_{1}\right)\right)\right)$ and $\left(\mu_{1}\left(D_{n}\left(x_{2}\right)\right)\right)$ are increasing sequences of non-negative measurable functions on $\left(\left(E_{1}, \mathcal{B}_{1}\right)\right.$ and $\left(\left(E_{2}, \mathcal{B}_{2}\right)\right.$ respectively. By Monotone convergence theorem, we have that $\lim _{n \rightarrow \infty}\left(\mu_{2}\left(D_{n}\left(x_{1}\right)\right)\right)$ and $\lim _{n \rightarrow \infty}\left(\mu_{1}\left(D_{n}\left(x_{2}\right)\right)\right)$ are measurable. But by theorem 3.1.6 (p. 36),

$$
\mu_{2}\left(\left(\bigcup_{n=1}^{\infty} D_{n}\right)\left(x_{1}\right)\right)=\mu_{2}\left(\bigcup_{n=1}^{\infty}\left(D_{n}\right)\left(x_{1}\right)\right)=\lim _{n \rightarrow \infty}\left(\mu_{2}\left(D_{n}\left(x_{1}\right)\right)\right)
$$

and

$$
\mu_{1}\left(\left(\bigcup_{n=1}^{\infty} D_{n}\right)\left(x_{2}\right)\right)=\mu_{1}\left(\bigcup_{n=1}^{\infty}\left(D_{n}\right)\left(x_{2}\right)\right)=\lim _{n \rightarrow \infty}\left(\mu_{1}\left(D_{n}\left(x_{2}\right)\right)\right)
$$

This shows that $\bigcup_{n=1}^{\infty} D_{n} \in \mathcal{D}$. Thus, \mathcal{D} is a λ-system. To show $\mathcal{C} \subset \mathcal{D}$, notice that if $\Gamma_{i} \in \mathcal{B}_{i}$, then $\left(\Gamma_{1} \times \Gamma_{2}\right)\left(x_{1}\right)=\Gamma_{2}$ and $\left(\Gamma_{1} \times \Gamma_{2}\right)\left(x_{2}\right)=\Gamma_{1}$. Thus, $\mu_{2}\left(\left(\Gamma_{1} \times \Gamma_{2}\right)\left(x_{1}\right)\right)=$ $\mu_{2}\left(\Gamma_{2}\right)$ and $\mu_{1}\left(\left(\Gamma_{1} \times \Gamma_{2}\right)\left(x_{2}\right)\right)=\mu_{1}\left(\Gamma_{1}\right)$ are constants, hence measurable. Therefore, $\Gamma_{1} \times \Gamma_{2} \in \mathcal{D}$. By Lemma 3.1.3 (p. 34), we have $\mathcal{D}=\mathcal{B}_{1} \times \mathcal{B}_{2}$.
2. Suppsose that μ is σ-finite on (E, \mathcal{B}), and write $E=\bigcup_{n=1}^{\infty} E_{n}$, where E_{n} are measurable, pairwise disjoint and $\mu\left(E_{n}\right)<\infty$. Define μ_{n} on \mathcal{B} by $\mu_{n}(A)=\mu\left(A \cap E_{n}\right)$. Show that μ_{n} is a measure on (E, \mathcal{B}) and for every $f \geq 0$ measurable,

$$
\int_{E} f d \mu=\sum_{n=1}^{\infty} \int_{E_{n}} f d \mu_{n} .
$$

Proof The proof that μ_{n} is a measure is left to the reader. We prove the second statement. Suppose first that $f=1_{A}$, where $A \in \mathcal{B}$. Notice that

$$
\mu(A)=\sum_{n=1}^{\infty} \mu\left(A \cap E_{n}\right)=\sum_{n=1}^{\infty} \mu_{n}(A) .
$$

Thus,

$$
\int_{E} f d \mu=\mu(A)=\sum_{n=1}^{\infty} \mu_{n}(A)=\sum_{n=1}^{\infty} \int_{E} f d \mu_{n}
$$

Suppose now that $f=\sum_{k=1}^{m} a_{k} 1_{A_{k}}$ is a non-negative simple function, where a_{1}, \cdots, a_{m} are distict and A_{1}, \cdots, A_{m} are measurable and disjoint. Then,

$$
\int_{E} f d \mu=\sum_{k=1}^{m} a_{k} \mu\left(A_{k}\right)=\sum_{k=1}^{m} a_{k} \sum_{n=1}^{\infty} \mu_{n}\left(A_{k}\right)=\sum_{n=1}^{\infty} \sum_{k=1}^{m} a_{k} \mu_{n}\left(A_{k}\right)=\sum_{n=1}^{\infty} \int_{E} f d \mu_{n} .
$$

Finally, let $f \geq 0$ be measurable. There exists an increasing sequence of non-negative simple functions f_{m} converging to f. Then,
$\int_{E} f d \mu=\lim _{m \rightarrow \infty} \int_{E} f_{m} d \mu=\lim _{m \rightarrow \infty} \sum_{n=1}^{\infty} \int_{E} f_{m} d \mu_{n}=\sum_{n=1}^{\infty} \lim _{m \rightarrow \infty} \int_{E} f_{m} d \mu_{n}=\sum_{n=1}^{\infty} \int_{E} f d \mu_{n}$.
Notice that problem 2(b) of Exercises 10 allows us to interchange the limit and the summation since for each n, the sequence $\left(\int_{E} f_{m} d \mu_{n}\right)$ is increasing.
3. Let $\left(E_{1}, \mathcal{B}_{1}, \mu_{1}\right)$ and $\left(E_{2}, \mathcal{B}_{2}, \mu_{2}\right)$ be σ-finite measure spaces. Let $\Gamma \in \mathcal{B}_{1} \times \mathcal{B}_{2}$. For $x_{1} \in E_{1}, x_{2} \in E_{2}$, let $\Gamma\left(x_{1}\right)=\left\{x_{2} \in E_{2}:\left(x_{1}, x_{2}\right) \in \Gamma\right\}$ and $\Gamma\left(x_{2}\right)=\left\{x_{1} \in E_{1}:\right.$ $\left.\left(x_{1}, x_{2}\right) \in \Gamma\right\}$. Show that the following are equivalent:
(i) $\left(\mu_{1} \times \mu_{2}\right)(\Gamma)=0$,
(ii) $\mu_{1}\left(\Gamma\left(x_{2}\right)\right)=0$ for μ_{2} almost every $x_{2} \in E_{2}$,
(iii) $\mu_{2}\left(\Gamma\left(x_{1}\right)\right)=0$ for μ_{1} almost every $x_{1} \in E_{1}$.

Proof By Tonelli's Theorem.

$$
\left(\mu_{1} \times \mu_{2}\right)(\Gamma)=\int_{E_{2}} \mu_{1}\left(\Gamma\left(x_{2}\right)\right) d \mu_{2}\left(x_{2}\right)=\int_{E_{1}} \mu_{2}\left(\Gamma\left(x_{1}\right)\right) d \mu_{1}\left(x_{1}\right) .
$$

Since $\mu_{1}\left(\Gamma\left(x_{2}\right)\right)$ and $\mu_{2}\left(\Gamma\left(x_{1}\right)\right)$ are non-negative measurable functions on $\left(E_{2}, \mathcal{B}_{2}, \mu_{2}\right)$ and $\left(E_{1}, \mathcal{B}_{1}, \mu_{1}\right)$ respectively, it follows from Theorem 3.2.8 that $\left(\mu_{1} \times \mu_{2}\right)(\Gamma)=0$ if and only if $\mu_{1}\left(\Gamma\left(x_{2}\right)\right)=0$ for μ_{2} almost every $x_{2} \in E_{2}$, and $\left(\mu_{1} \times \mu_{2}\right)(\Gamma)=0$ if and only if $\mu_{2}\left(\Gamma\left(x_{1}\right)\right)=0$ for μ_{1} almost every $x_{1} \in E_{1}$.
4. Consider ($\mathbb{R}, \mathcal{B}, \lambda$), where \mathcal{B} is the Borel σ-algebra, λ is Lebesgue measure and μ is counting measure (i.e. $\mu(A)=$ number of elements in A). Let $A=\{x, y): x=y\}$, show that

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} 1_{A}(x, y) d \lambda(x) d \mu(y)=0
$$

while

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} 1_{A}(x, y) d \mu(y) d \lambda(x)=\infty .
$$

Why does not this violate Tonelli's Theorem?
Proof For any $x \in \mathbb{R}, A(x)=\{y \in \mathbb{R}:(x, y) \in A\}=\{x\}$. Thus, $\mu(A(x))=1$ and $\lambda(A(x))=0$. Hence,

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} 1_{A}(x, y) d \lambda(x) d \mu(y)=\int_{\mathbb{R}} \lambda(A(y)) d \mu(y)=0
$$

and

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} 1_{A}(x, y) d \mu(y) d \lambda(x)=\int_{\mathbb{R}} \mu(A(x)) d \lambda(x)=\lambda(\mathbb{R})=\infty
$$

The reason why Tonelli's Theorem does not hold is because the measure μ is not σ-finite.

