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Measure and Integration Exercises 13

1. Let (E1,B1, µ1) and (E2,B2, µ2) be finite measure spaces. Let Γ ∈ B1 × B2. For
x1 ∈ E1, x2 ∈ E2, let Γ(x1) = {x2 ∈ E2 : (x1, x2) ∈ Γ} and Γ(x2) = {x1 ∈ E1 :
(x1, x2) ∈ Γ}. Let

D = {Γ ∈ B1 × B2 : µ2(Γ(x1)) and µ1(Γ(x2)) are measurable }.

Show that D is a λ-system containing C = {Γ1 × Γ2 : Γi ∈ Bi, i = 1, 2}. Conclude
that D = B1 × B2.

Proof To show D is a λ-system, we need to check conditions (a)-(d) on page
34. First notice that if C, D ∈ B1 × B2, and x1 ∈ E1, then Dc(x1) = (D(x1))

c,
(C∪D)(x1) = C(x1)∪D(x1), and (D\C)(x1) = D(x1)\C(x1). Similarly, if we replace
x1 by x2. From this conditions (a) and (b) easily follow. Now suppose C, D ∈ D
with C ⊆ D, then µ2((D \ C)(x1)) = µ2(D(x1)) − µ2(C(x1)) is measurable (notice
that the difference is well defined since µ2 is a finite measure). Similarly, µ1((D \
C)(x1)) = µ2(D(x1)) − µ2(C(x1)). Now, let D1 ⊆ D2 ⊆ · · · be a sequence in D,
then for any x1 ∈ E1 and x2 ∈ E2, one has that (µ2(Dn(x1))) and (µ1(Dn(x2))) are
increasing sequences of non-negative measurable functions on ((E1,B1) and ((E2,B2)
respectively. By Monotone convergence theorem, we have that lim

n→∞

(µ2(Dn(x1))) and

lim
n→∞

(µ1(Dn(x2))) are measurable. But by theorem 3.1.6 (p. 36),

µ2((
∞⋃

n=1

Dn)(x1)) = µ2(
∞⋃

n=1

(Dn)(x1)) = lim
n→∞

(µ2(Dn(x1)))

and

µ1((
∞⋃

n=1

Dn)(x2)) = µ1(
∞⋃

n=1

(Dn)(x2)) = lim
n→∞

(µ1(Dn(x2))).

This shows that
⋃

∞

n=1
Dn ∈ D. Thus, D is a λ-system. To show C ⊂ D, notice that if

Γi ∈ Bi, then (Γ1 ×Γ2)(x1) = Γ2 and (Γ1 ×Γ2)(x2) = Γ1. Thus, µ2((Γ1×Γ2)(x1)) =
µ2(Γ2) and µ1((Γ1 ×Γ2)(x2)) = µ1(Γ1) are constants, hence measurable. Therefore,
Γ1 × Γ2 ∈ D. By Lemma 3.1.3 (p. 34), we have D = B1 × B2.

2. Suppsose that µ is σ-finite on (E,B), and write E =
⋃

∞

n=1
En, where En are mea-

surable, pairwise disjoint and µ(En) < ∞. Define µn on B by µn(A) = µ(A ∩ En).
Show that µn is a measure on (E,B) and for every f ≥ 0 measurable,

∫
E

f dµ =
∞∑

n=1

∫
En

f dµn.
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Proof The proof that µn is a measure is left to the reader. We prove the second
statement. Suppose first that f = 1A, where A ∈ B. Notice that

µ(A) =
∞∑

n=1

µ(A ∩ En) =
∞∑

n=1

µn(A).

Thus, ∫
E

f dµ = µ(A) =

∞∑
n=1

µn(A) =

∞∑
n=1

∫
E

f dµn.

Suppose now that f =
∑

m

k=1
ak1Ak

is a non-negative simple function, where a1, · · · , am

are distict and A1, · · · , Am are measurable and disjoint. Then,

∫
E

f dµ =
m∑

k=1

akµ(Ak) =
m∑

k=1

ak

∞∑
n=1

µn(Ak) =
∞∑

n=1

m∑
k=1

akµn(Ak) =
∞∑

n=1

∫
E

f dµn.

Finally, let f ≥ 0 be measurable. There exists an increasing sequence of non-negative
simple functions fm converging to f . Then,

∫
E

f dµ = lim
m→∞

∫
E

fm dµ = lim
m→∞

∞∑
n=1

∫
E

fm dµn =

∞∑
n=1

lim
m→∞

∫
E

fm dµn =

∞∑
n=1

∫
E

f dµn.

Notice that problem 2(b) of Exercises 10 allows us to interchange the limit and the
summation since for each n, the sequence (

∫
E

fm dµn) is increasing.

3. Let (E1,B1, µ1) and (E2,B2, µ2) be σ-finite measure spaces. Let Γ ∈ B1 × B2. For
x1 ∈ E1, x2 ∈ E2, let Γ(x1) = {x2 ∈ E2 : (x1, x2) ∈ Γ} and Γ(x2) = {x1 ∈ E1 :
(x1, x2) ∈ Γ}. Show that the following are equivalent:

(i) (µ1 × µ2)(Γ) = 0,

(ii) µ1(Γ(x2)) = 0 for µ2 almost every x2 ∈ E2,

(iii) µ2(Γ(x1)) = 0 for µ1 almost every x1 ∈ E1.

Proof By Tonelli’s Theorem.

(µ1 × µ2)(Γ) =

∫
E2

µ1(Γ(x2)) dµ2(x2) =

∫
E1

µ2(Γ(x1)) dµ1(x1).

Since µ1(Γ(x2)) and µ2(Γ(x1)) are non-negative measurable functions on (E2,B2, µ2)
and (E1,B1, µ1) respectively, it follows from Theorem 3.2.8 that (µ1 × µ2)(Γ) = 0 if
and only if µ1(Γ(x2)) = 0 for µ2 almost every x2 ∈ E2, and (µ1 × µ2)(Γ) = 0 if and
only if µ2(Γ(x1)) = 0 for µ1 almost every x1 ∈ E1.

4. Consider (R,B, λ), where B is the Borel σ-algebra, λ is Lebesgue measure and µ is
counting measure (i.e. µ(A) = number of elements in A). Let A = {x, y) : x = y},
show that ∫

R

∫
R

1A(x, y)dλ(x)dµ(y) = 0
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while ∫
R

∫
R

1A(x, y)dµ(y)dλ(x) = ∞.

Why does not this violate Tonelli’s Theorem?

Proof For any x ∈ R, A(x) = {y ∈ R : (x, y) ∈ A} = {x}. Thus, µ (A(x)) = 1 and
λ (A(x)) = 0. Hence,

∫
R

∫
R

1A(x, y)dλ(x)dµ(y) =

∫
R

λ(A(y))dµ(y) = 0,

and ∫
R

∫
R

1A(x, y)dµ(y)dλ(x) =

∫
R

µ(A(x))dλ(x) = λ(R) = ∞.

The reason why Tonelli’s Theorem does not hold is because the measure µ is not

σ-finite.
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