Universiteit Utrecht

Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Measure and Integration Solutions 14

1. (E, \mathcal{B}, μ) be a σ -finite measure space, and $f: E \to [0, \infty)$ measurable. Define

$$\Gamma(f) = \{ (x, t) \in E \times [0, \infty) : t < f(x) \},\$$

and

$$\overline{\Gamma}(f) = \{(x,t) \in E \times [0,\infty) : t \le f(x)\}.$$

- (a) Show that the function $F : E \times [0, \infty) \to \mathbb{R}$ given by F(x, t) = f(x) t is measurable with respect to the product σ -algebra $\mathcal{B} \times \mathcal{B}_{[0,\infty)}$, where $\mathcal{B}_{[0,\infty)}$ is the restriction of the Borel σ -algebra on $[0, \infty)$.
- (b) Show that $\Gamma(f), \overline{\Gamma}(f) \in \mathcal{B} \times \mathcal{B}_{[0,\infty)}$, and

$$(\mu \times \lambda_{\mathbb{R}})(\Gamma(f)) = (\mu \times \lambda_{\mathbb{R}})(\overline{\Gamma}(f)) = \int_{E} f(x) d\mu(x).$$

Proof (a) We will show that the function F is the composition of measurable functions. Let $f_1, f_2 : E \times [0, \infty) \to [0, \infty)$ be given by

$$f_1(x,t) = f(x)$$
, and $f_2(x,t) = t$.

Then, for any $a \ge 0$,

$$f_1^{-1}\left([a,\infty)\right) = f^{-1}\left([a,\infty)\right) \times \mathbb{R} \in \mathcal{B} \times \mathcal{B}_{[0,\infty)}, \text{ and } f_2^{-1}\left([a,\infty)\right) = E \times [a,\infty) \in \mathcal{B} \times \mathcal{B}_{[0,\infty)}.$$

Thus, f_1, f_2 are measurable. By Lemma 3.2.2, the tensor product $(f_1 \times f_2) : E \times [0, \infty) \to [0, \infty) \times [0, \infty)$ given by $(f_1 \times f_2)(x, t) = (f_1(x, t), f_2(x, t)) = (f(x), t)$ is measurable. Let $g : [0, \infty) \times [0, \infty) \to \mathbb{R}$ be given by g(s, t) = s - t, then g is continuous, and hence measurable. Now, $F(x, t) = g \circ (f_1 \times f_2)(x, t)$, hence F is the composition of two measurable functions, therefore F is measurable.

Proof (b) Notice that $\Gamma(f) = F^{-1}((0,\infty))$ and $\overline{\Gamma}(f) = F^{-1}([0,\infty))$. Since F is measurable, it follows that $\Gamma(f), \overline{\Gamma}(f) \in \mathcal{B} \times \mathcal{B}_{[0,\infty)}$.

Since $1_{\Gamma(f)}, 1_{\overline{\Gamma}(f)} \ge 0$ are measurable, by Tonelli's Theorem (Theorem 4.1.5),

$$\begin{aligned} (\mu \times \lambda_{\mathbb{R}})(\Gamma(f)) &= \int_{E \times [0,\infty)} \mathbb{1}_{\Gamma(f)}(x,t) d(\mu \times \lambda_{\mathbb{R}})(x,t) \\ &= \int_{E} \int_{[0,\infty)} \mathbb{1}_{\{t \ge 0: \, t < f(x)\}}(t) d\lambda_{\mathbb{R}}(t) d\mu(x) \\ &= \int_{E} \lambda_{\mathbb{R}} \left([0, f(x)) \right) d\mu(x) \\ &= \int_{E} f(x) d\mu(x). \end{aligned}$$

Similarly,

$$(\mu \times \lambda_{\mathbb{R}})(\overline{\Gamma}(f)) = \int_{E} \lambda_{\mathbb{R}} \left([0, f(x)] \right) d\mu(x) = \int_{E} f(x) d\mu(x).$$

- 2. Let $E = \{(x, y) : 0 < x < \infty, 0 < y < 1\}$. We consider on E the restriction of the product Borel σ -algebra, and the restriction of the product Lebesgue measure $\lambda \times \lambda$. Let $f : E \to \mathbb{R}$ be given by $f(x, y) = y \sin x e^{-xy}$.
 - (a) Show that f is $\lambda \times \lambda$ integrable on E.
 - (b) Applying Fubini's Theorem to the function f, show that

$$\int_0^\infty \frac{\sin x}{x} \left(\frac{1 - e^{-x}}{x} - e^{-x} \right) dx = \frac{1}{2} \log 2.$$

Proof(a) Notice that f is continuous, and hence measurable. Furthermore, $|f(x, y)| \le ye^{-xy}$. The function $g(x, y) = ye^{-xy}$ is non-negative measurable function, hence by Tonelli's Theorem,

$$\begin{split} \int_{E} |f(x,y)| d(\lambda \times \lambda)(x,y) &\leq \int_{E} y e^{-xy} d(\lambda \times \lambda)(x,y) \\ &= \int_{0}^{1} \int_{0}^{\infty} y e^{-xy} dx dy \\ &= \int_{0}^{1} 1 \, dy = 1. \end{split}$$

Notice that the integrands are Riemann integrable, hence the Riemann integral equals the Lebesgue integral, also the second equality is obtained by integration by parts. This shows that f is $\lambda \times \lambda$ integrable on E.

Proof(b) By Fubini's Theorem,

$$\int_E f(x,y)d(\lambda \times \lambda)(x,y) = \int_0^1 \int_0^\infty y \, \sin x \, e^{-xy} dx dy = \int_0^\infty \int_0^1 y \, \sin x \, e^{-xy} dy dx.$$

Using integration by parts, one has

$$\int_0^\infty y\,\sin x\,e^{-xy}dx = \frac{y}{y^2+1}$$

Hence,

$$\int_E f(x,y)d(\lambda \times \lambda)(x,y) = \int_0^\infty \frac{y}{y^2 + 1}dy = \frac{1}{2}\log 2.$$

On the other hand, again by integration by parts one has,

$$\int_0^1 y \, \sin x \, e^{-xy} dy = \frac{\sin x}{x} \left(\frac{1 - e^{-x}}{x} - e^{-x} \right).$$

Therefore,

$$\int_0^\infty \frac{\sin x}{x} \left(\frac{1 - e^{-x}}{x} - e^{-x} \right) dx = \frac{1}{2} \log 2.$$

- 3. Let (L, (,)) be an inner product space, and let $||x||_L = (x, x)^{1/2}$. $x \in L$.
 - (a) Let $(x_n) \subseteq L$, and $x \in L$. Show that if $\lim_{n \to \infty} ||x_n x||_L = 0$, then $\lim_{n \to \infty} ||x_n||_L = ||x||_L$.
 - (b) Prove that the inner product (,) is jointly continuous, i.e. if $\lim_{n \to \infty} ||x_n x||_L = 0$ and $\lim_{n \to \infty} ||y_n y||_L = 0$, then $\lim_{n \to \infty} (x_n, y_n) = (x, y)$.

Proof (a)

$$||x_n||_L - ||x||_L| \le ||x_n - x||_L \to 0 \text{ as } n \to \infty$$

Thus, $\lim_{n \to \infty} ||x_n||_L = ||x||_L$.

Proof (b) Suppose that $\lim_{n\to\infty} ||x_n - x||_L = 0$ and $\lim_{n\to\infty} ||y_n - y||_L = 0$. By Cauchy-Schwartz inequality and part (a), we have

$$\begin{aligned} |(x_n, y_n) - (x, y)| &= |(x_n, y_n - y) + (x_n - x, y)| \\ &\leq |(x_n, y_n - y)| + |(x_n - x, y)| \\ &\leq ||x_n||_L ||y_n - y||_L + ||y||_L ||x_n - x||_L \\ &\to ||x_n||_L \cdot 0 + ||y||_L \cdot 0 = 0. \end{aligned}$$

Therefore, $\lim_{n \to \infty} (x_n, y_n) = (x, y).$

4. Let (E, \mathcal{B}, μ) be a measure space, and let $\{f_n\} \subseteq L^2(\mu)$ be such that

$$\lim_{m \to \infty} \sup_{n \ge m} ||f_n - f_m||_{L^2(\mu)} = 0$$

Show that there exists a function $f \in L^2(\mu)$ such that $\lim_{n \to \infty} ||f_n - f||_{L^2(\mu)} = 0$. In other words $(L^2(\mu), || ||_{L^2(\mu)})$ is a complete metric space.

Proof By the Markov inequality,

$$\mu(|f_n - f_m| \ge \epsilon) = \mu(|f_n - f_m|^2 \ge \epsilon^2) \le \frac{1}{\epsilon^2} ||f_n - f_m||^2_{L^2(\mu)}.$$

Hence,

$$\lim_{m \to \infty} \sup_{n \ge m} \mu(|f_n - f_m| \ge \epsilon) \le \lim_{m \to \infty} \sup_{n \ge m} \frac{1}{\epsilon^2} ||f_n - f_m||_{L^2(\mu)}^2 = 0.$$

By Theorem 3.3.10 there exists a measurable function f such that $f_n \to f$ in μ measure. Furthermore, there exists a subsequence (f_{n_i}) such that $f_{n_i} \to f \mu$ a.e., hence for each m, $f_{n_i} - f_m \to f - f_m$ (as $n \to \infty$) μ a.e.. By Fatou's lemma

$$||f - f_m||_{L^2(\mu)}^2 \le \liminf_{i \to \infty} ||f_{n_i} - f_m||_{L^2(\mu)}^2 \le \sup_{n \ge m} ||f_n - f_m||_{L^2(\mu)}^2.$$

Thus, $\lim_{m\to\infty} ||f - f_m||_{L^2(\mu)} = 0$. Furthermore, $f - f_m \in L^2(\mu)$ for each m. Since $f = (f - f_m) + f_m$ with $f - f_m \in L^2(\mu)$ and $f_m \in L^2(\mu)$, it follows that $f \in L^2(\mu)$.