Measure and Integration Solutions 15

1. Let (E, \mathcal{B}, μ) be a measure space. Show (without using Cauchy-Schwartz inequality) that if $f, g \in L^{2}(\mu)$, then

$$
\int_{E}|f g| d \mu \leq\|f\|_{L^{2}(\mu)}\|g\|_{L^{2}(\mu)}
$$

This is known as Hölders inequality. (Hint: for any real numbers a, b one has $2|a b| \leq a^{2}+b^{2}$, why?)

Proof Let $a=\frac{|f|}{\|f\|_{L^{2}(\mu)}}$ and $b=\frac{|g|}{\|g\|_{L^{2}(\mu)}}$. Using the hint, one has

$$
\frac{|f g|}{\|f\|_{L^{2}(\mu)}\|g\|_{L^{2}(\mu)}} \leq \frac{1}{2} \frac{|f|^{2}}{\|f\|_{L^{2}(\mu)}^{2}}+\frac{|g|^{2}}{\|g\|_{L^{2}(\mu)}^{2}} .
$$

Integrating both sides (the integral of the right hand side is equal to one) and multiplying by $\|f\|_{L^{2}(\mu)}\|g\|_{L^{2}(\mu)}$, one gets the required result.
2. Let (E, \mathcal{B}, μ) be a finite measure space. Show that $L^{2}(\mu) \subseteq L^{1}(\mu)$. Show that the result is not true in case μ is not a finite measure

Proof Let $f \in L^{2}(\mu)$, then by Hölders inequality,

$$
\int_{E}|f| d \mu=\int_{E}|f| \cdot 1 d \mu \leq\|f\|_{L^{2}(\mu)}\|1\|_{L^{2}(\mu)}=\|f\|_{L^{2}(\mu)} \mu(E)<\infty .
$$

Thus, $f \in\|f\|_{L^{1}(\mu)}$, and hence $L^{2}(\mu) \subseteq L^{1}(\mu)$.
We give a simple counterexample to show that the result is not true if μ is not a finite measure. For this consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where λ is Lebesgue measure. Let $f=\frac{1}{x} \cdot 1_{[1, \infty)}$. Then $\int_{\mathbb{R}} f d \lambda=\infty$, while $\int_{\mathbb{R}} f^{2} d \lambda=1$. This shows that $f \in L^{2}(\mu)$ but $f \notin L^{1}(\mu)$
3. Let μ and ν be two measures on the measure space (E, \mathcal{B}) such that $\mu(A) \leq \nu(A)$ for all $A \in \mathcal{B}$. Show that if f is any non-negative measurable function on (E, \mathcal{B}), then $\int_{E} f d \mu \leq \int_{E} f d \nu$. Conclude that if ν is a finite measure, then $L^{2}(\nu) \subseteq L^{1}(\nu) \subseteq$ $L^{1}(\mu)$.

Proof Suppose first that $f=1_{A}$ is the indicator function of some set $A \in \mathcal{B}$. Then

$$
\int_{E} f d \mu=\mu(A) \leq \nu(A)=\int_{E} f d \nu
$$

Suppose now that $f=\sum_{k=1}^{n} \alpha_{k} 1_{A_{k}}$ is a non-negative measurable step function. Then,

$$
\int_{E} f d \mu=\sum_{k=1}^{n} \alpha_{k} \mu\left(A_{k}\right) \leq \sum_{k=1}^{n} \alpha_{k} \nu\left(A_{k}\right)=\int_{E} f d \nu
$$

Finally, let f be a non-negative measurable function, then there exists a sequence of non-negative measurable step functions f_{n} such that $f_{n} \uparrow f$. By the Monotone Convergence Theorem,

$$
\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu \leq \lim _{n \rightarrow \infty} \int_{E} f_{n} d \nu=\int_{E} f d \nu
$$

The above implies that if $f \in L^{1}(\nu)$, then $f \in L^{1}(\mu)$, i.e. $L^{1}(\nu) \subseteq L^{1}(\mu)$. If ν is a finite measure, then by problem 3 and the above, we have $L^{2}(\nu) \subseteq L^{1}(\nu) \subseteq$ $L^{1}(\mu)$.
4. Let (E, \mathcal{B}) be a measurable space, and μ_{1}, μ_{2} and ν measures on (E, \mathcal{B}). Show the following:
(a) If $\mu_{1} \perp \nu$ and $\mu_{2} \perp \nu$, then $\mu_{1}+\mu_{2} \perp \nu$.
(b) If $\mu_{1} \ll \nu$ and $\mu_{2} \perp \nu$, then $\mu_{1} \perp \mu_{2}$.
(c) If $\mu_{1} \ll \nu$ and $\mu_{1} \perp \nu$, then μ_{1} is the zero measure.

Proof (a) Let $A, B \in \mathcal{B}$ be such that

$$
\nu\left(A^{c}\right)=\mu_{1}(A)=0 \text { and } \nu\left(B^{c}\right)=\mu_{2}(B)=0 .
$$

Let $C=A \cap B$, then

$$
\nu\left(C^{c}\right) \leq \nu\left(A^{c}\right)+\nu\left(B^{c}\right)=0
$$

and

$$
\left(\mu_{1}+\mu_{2}\right)(C) \leq \mu_{1}(A)+\mu_{2}(B)=0 .
$$

Thus, $\nu\left(C^{c}\right)=0=\left(\mu_{1}+\mu_{2}\right)(C)$ and $\mu_{1}+\mu_{2} \perp \nu$.
Proof (b) Let $A \in \mathcal{B}$ be such that $\nu\left(A^{c}\right)=0=\mu_{2}(A)$. Since $\mu_{1} \ll \nu$, then $\mu_{1}\left(A^{c}\right)=0=\mu_{2}(A)$. Thus, $\mu_{1} \perp \mu_{2}$.

Proof (c) Let $A \in \mathcal{B}$ be such that $\nu\left(A^{c}\right)=0=\mu_{1}(A)$. Since $\mu_{1} \ll \nu$, it follows that $\mu_{1}\left(A^{c}\right)=0=\mu_{1}(A)$. Then, $\mu_{1}(E)=\mu_{1}(A)+\mu_{1}\left(A^{c}\right)=0$. Thus $\mu_{1}(B)=0$ for all $B \in \mathcal{B}$.

