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Measure and Integration Solutions 16
1. Consider the measure space (R, B(R)), where B(R) is the Borel o-algebra. Define o
1
on B(R) by o(I') = Z 5

neZ\{0}nr
(a) Show that o is a measure on B(R) such that ¢ L A, where A is Lebesgue
measure on B(R).

(b) Let f € L'(\) be non-negative, and define p on B(R) by u(I') = [, f dAX. Let
v =+ o. Find the Lebesgue decomposition of v with respect to .

Proof(a) It is easy to check that o is o-additive, and that A\(Z) = o(Z°) = 0.
Thus, o L A.

Proof(b) Since p < A and ¢ L A, then by the uniqueness of the Lebesgue
decomposition, we have that y = v, and o = v,.

2. Let (E,B,v) be a measure space, and h : E — R a non-negative measurable func-
tion. Define a measure p on (E,B) by u(A) = [, hdv for A € B. Show that for
every measurable function F': E — R one has

/qu:/thy
E E

in the sense that if one integral exists, then the other integral also exists, and they
are equal.

Proof Suppose first that F' = 14 is the indicator function of some measurable set

A € B. Then,
/Fd,u:u(A):/hdy:/lAhdy:/thy.
E A E E

n
Suppose now that F' = Z a1y, is a non-negative measurable step function. Then,
k=1

/ Fdy= ZakM(Ak) = Zak/ 14hdy = / ZaklAth = / Fhdv.
E k=1 k=1 E B k=1 B

Suppose that F' is a non-negative measurable function, then there exists a sequence
of non-negative measurable step functions F), such that F,, T F. Then, F,h T Fh,
and by the Monotone Convergence Theorem,

/Fd,u: lim | F,dp= lim [ F,hdv = / Fhdv.
E E E E

n—0o0 n—oo
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Finally, suppose that F' is a measurable function. Then,

/F+du:/F+hdljand /F‘du:/F_hdl/.
E E E E

From the above we see that [, F dp exists if and only if [, Fhdv exists. If both
integrals exist, then

/Fd,u:/F+d,u—/F_dM:/FJ'_hdl/—/F_hdl/:/thl/.
E E E E E E

. Suppose that pu;, v; are finite measures on (F,B) with pu; < v;, 1 = 1,2. Let
v=uv; Xvyand = g X ps.

(a) Show that p < v.
b) Prove that % (z,y) = %4 (z) - 22(y) v a.e.
dv

du dvo
Proof(a) Let I' € B x B be such that v(I') = 0. By problem 3, exercises 13 it
follows that v1(I'(x2)) = 0 15 a.e. and v5(I'(x1)) = 0 14 a.e. Since pu; K vy, i = 1,2,
then g1 (F(x2)) = 0 pe a.e. and po(I(x1)) = 0 py a.e. Thus, by problem 3, exercises
13 it follows that p(I') = 0. Therefore, p < v.

Proof(b) First recall that Z—‘Ij is the unique v a.e. L'(p) function satisfying u(A) =

i) ) Z—fj. Consider for any A € B x B, by Tonelli’s theorem and problem 3 above, we
have

o) L) = [ [ Lo LR w)in )

A diy dvy 1

_ /E /E La(,0) 2 @)y )

1

- /E ( /E 1A<x,y>du2<y>>j—’2<x>dm<x>
= /E /E La(z,y)dpsa(y)dp (x)
= G x a)(A) = u(4) = [ L )avia. ),

Since this is true for all A € B x B, it follows from problem 3, exercises 9 that

d d d
v (t,y) = G (@) - G2(y) v ae.

. Let (E,B) be a measurable space, p a finite measures on (£, B) and v a o-finite
measure on (F, B). Show that u < v if and only if for every ¢ > 0 there exists a
d > 0 such that if A € B with v(A) <4, then u(A) <e.

Proof: Suppose p < v, the proof is done by contradiction. Suppose there exists an
€ > 0 such that for every § > 0 there exists a measurable set A such that v(A) < ¢
but p(A) > e. By our assumption, for each n > 1 there exists a measurable subset

1
A, such that v(A,) < o and p(A,) > e. Let A =limsup, . A, =y U, Am.



Since > 7 v(A,) < oo, then by Borel-Cantelli Lemma (problem 3(c) in Exercises
7) we have v(A) = 0. But then p(A) = 0. Since p is a finite measure, by problem
3(b) in Exercises 7, we have

0 = pu(A) = p(limsup A,) > limsup pu(4,) > e,

n—oo n—0o0

a contradiction. Therefore, for every € > 0 there exists a 6 > 0 such that if A € B
with v(A) < § then p(A) <e.



