Universiteit Utrecht

Mathematisch Instituut



Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

## Measure and Integration Solutions 2

1. Let a < s < b, and suppose  $f : [a, b] \to \mathbb{R}$  is bounded and continuous at s. Let  $\Psi : [a, b] \to R$  be given by

$$\Psi(x) = \begin{cases} 0 & \text{if } a \le x \le s \\ 1 & \text{if } s < x \le b. \end{cases}$$

Show that f is  $\Psi$ -Riemann integrable, and  $\int_a^b f(x)d\Psi(x) = f(s)$ .

**Proof.** Let  $\epsilon > 0$ . By continuity of f at s there exists a  $\delta > 0$  such that  $|f(x) - f(s)| < \epsilon$  for  $|x - s| < \delta$ ,  $x \in [a, b]$ . Let  $\mathcal{C}$  be a finite exact non-overlapping cover of [a, b] with  $||\mathcal{C}|| < \delta$ . Notice that  $\Delta_I \Psi = 0$  for all  $I \in \mathcal{C}$  with  $s \notin I$ . The point s belongs to at most two elements of  $\mathcal{C}$ . If s is a right end-point of some I, then  $\Delta_I \Psi = 0$ . If s is a left end-point or an interior point of some I, then  $\Delta_I \Psi = 1$ . Let  $I_0$  be the unique element of  $\mathcal{C}$  containing s as a left end-point or an interior point, then for any choice function  $\xi$ ,

$$\mathcal{R}(f|\Psi;\mathcal{C},\xi) = f(\xi(I_0)).$$

Since  $\|\mathcal{C}\| < \delta$ , then

$$|\mathcal{R}(f|\Psi;\mathcal{C},\xi) - f(s)| = |f(\xi(I_0)) - f(s)| < \epsilon.$$

Thus, f is  $\Psi$ -Riemann integrable, and  $\int_a^b f(x)d\Psi(x) = f(s)$ .

2. Let  $a = a_0 < a_1 < a_2 < \cdots < a_n = b$ , and suppose that the function  $\Psi : [a, b] \to R$ has the constant value  $c_i$  on the interval  $(a_{i-1}, a_i)$  for  $i = 1, 2, \cdots, n$ . Show that if  $f : [a, b] \to \mathbb{R}$  is continuous, then f is  $\Psi$ -Riemann integrable, and

$$\int_{a}^{b} f(x)d\Psi(x) = \sum_{i=0}^{n} f(a_i)d_i,$$

where

$$d_{i} = \begin{cases} c_{1} - \Psi(a) & \text{if } i = 0\\ c_{i+1} - c_{i} & \text{if } 1 \le i \le n - 1\\ \Psi(b) - c_{n} & \text{if } i = n. \end{cases}$$

**Proof.** Let  $\epsilon > 0$ . Since f is uniformly continuous on [a, b], there exists a  $\delta > 0$  such that  $|f(x) - f(y)| < \epsilon$  for all  $x, y \in [a, b]$  with  $|x - y| < \delta$ . Let  $\mathcal{C}$  be any finite exact non-overlapping cover of [a, b] with  $||\mathcal{C}|| < \delta$ . Assume with no loss of generality that the  $a'_i s$  are end-points of some of the intervals in  $\mathcal{C}$  (otherwise we refine  $\mathcal{C}$  further). Call these intervals  $I_0, I_1^-, I_1^+, \ldots, I_{n-1}^-, I_{n-1}^+, I_n$ , where  $I_0$  contains  $a = a_0$  as a left

end point,  $I_n$  contains  $a_n = b$  as a right end-point, and for i = 1, 2, ..., n - 1,  $I_i^-$  contains  $a_i$  as a right end-point, and  $I_i^+$  contains  $a_i$  as a left end-point. Notice that if  $I \in \mathcal{C}$  with  $a_i \notin I$  for all i = 0, 1, ..., n, then  $\Delta_I \Psi = 0$ . Thus, for any choice function  $\xi$  we have,

$$\mathcal{R}(f|\Psi;\mathcal{C},\xi) = f(\xi(I_0))\Delta_{I_0}\Psi + \sum_{i=1}^{n-1} (f(\xi(I_i^-)\Delta_{I_i^-}\Psi + f(\xi(I_i^+))\Delta_{I_i^+}\Psi) + f(\xi(I_n))\Delta_{I_n}\Psi.$$

Now,  $\Delta_{I_0} \Psi = c_1 - \Psi(a)$ ,  $\Delta_{I_n} \Psi = \Psi(b) - c_n$  and for i = 1, 2, ..., n - 1,  $\Delta_{I_i^-} \Psi = \Psi(a_i) - c_i$  and  $\Delta_{I_i^+} \Psi = c_{i+1} - \Psi(a_i)$ . Notice that  $d_i = (c_{i+1} - \Psi(a_i)) - (\Psi(a_i) - c_i)$  for i = 1, 2, ..., n - 1. Thus,

$$\begin{aligned} |\mathcal{R}(f|\Psi;\mathcal{C},\xi) - \sum_{i=0}^{n} f(a_{i})d_{i}| &\leq |f(\xi(I_{0}) - f(a)||c_{1} - \Psi(a)| \\ &+ \sum_{i=1}^{n-1} |f(\xi(I_{i}^{-}) - f(a_{i})||\Psi(a_{i}) - c_{i}| \\ &+ \sum_{i=1}^{n-1} |f(\xi(I_{i}^{+}) - f(a_{i})||\Psi(a_{i}) - c_{i+1}| \\ &+ |f(\xi(I_{n}) - f(b)||\Psi(b) - c_{n}| \\ &< \epsilon M, \end{aligned}$$

where  $M = |c_1 - \Psi(a)| + \sum_{i=1}^{n-1} |(\Psi(a_i) - c_i| + \sum_{i=1}^{n-1} |(\Psi(a_i) - c_{i+1}| + |\Psi(b) - c_n|.$ Thus, f is  $\Psi$ -Riemann integrable, and  $\int_a^b f(x) d\Psi(x) = \sum_{i=0}^n f(a_i) d_i.$ 

3. Let  $\Psi : [a, b] \to R$  be non-decreasing, and let  $f : [a, b] \to \mathbb{R}$  be bounded. Show that f is  $\Psi$ -Riemann integrable **if and only if** for every  $\epsilon > 0$ , there exists a  $\delta > 0$  such that

$$\sum_{\{I \in \mathcal{C} : \sup_{x \in I} f(x) - \inf_{x \in I} f(x) \ge \epsilon\}} \Delta_I \Psi < \epsilon$$

for all finite non-overlapping exact covers C of [a, b] such that  $||C|| < \delta$ .

**Proof.** Suppose f is  $\Psi$ -Riemann integrable, then

$$\lim_{\|\mathcal{C}\|\to 0} \mathcal{U}(f|\Psi;\mathcal{C}) = \lim_{\|\mathcal{C}\|\to 0} \mathcal{L}(f|\Psi;\mathcal{C}) = \int_{[a,b]} f(x) d\Psi(x).$$

Thus, given  $\epsilon > 0$  there exists a  $\delta > 0$  such that

$$\mathcal{U}(f|\Psi;\mathcal{C}) - \mathcal{L}(f|\Psi;\mathcal{C}) < \epsilon^2$$

for all finite exact non-overlapping covers of [a, b] such that  $\|\mathcal{C}\| < \delta$ . Let  $\mathcal{B} = \{I \in \mathcal{C} : \sup_{x \in I} f(x) - \inf_{x \in I} f(x) \ge \epsilon\}$ . Then,

$$\epsilon \sum_{I \in \mathcal{B}} \Delta_I \Psi \leq \sum_{I \in \mathcal{B}} \sup_{x \in I} f(x) - \inf_{x \in I} f(x) \Delta_I \Psi$$
$$\leq \sum_{I \in \mathcal{C}} \sup_{x \in I} f(x) - \inf_{x \in I} f(x) \Delta_I \Psi$$
$$= \mathcal{U}(f|\Psi; \mathcal{C}) - \mathcal{L}(f|\Psi; \mathcal{C}) < \epsilon^2.$$

This implies that  $\sum_{I \in \mathcal{B}} \Delta_I \Psi < \epsilon$ .

Conversely, let  $\epsilon > 0$ . By hypothesis, there exists a  $\delta > 0$  such that

$$\sum_{\{I \in \mathcal{C} : \sup_{x \in I} f(x) - \inf_{x \in I} f(x) \geq \epsilon\}} \Delta_I \Psi < \epsilon$$

for all finite non-overlapping exact covers  $\mathcal{C}$  of [a, b] such that  $||\mathcal{C}|| < \delta$ . Let  $\mathcal{B} = \{I \in \mathcal{C} : \sup_{x \in I} f(x) - \inf_{x \in I} f(x) \ge \epsilon\}$  and  $\mathcal{G} = \mathcal{C} \setminus \mathcal{B}$ . Set  $M = \sup_{x \in [a,b]} |f(x)|$ , then

$$\mathcal{U}(f|\Psi;\mathcal{C}) - \mathcal{L}(f|\Psi;\mathcal{C}) = \sum_{I \in \mathcal{B}} \sup_{x \in I} f(x) - \inf_{x \in I} f(x) \Delta_I \Psi + \sum_{I \in \mathcal{G}} \sup_{x \in I} f(x) - \inf_{x \in I} f(x) \Delta_I \Psi < 2M\epsilon + \epsilon(\Psi(b) - \Psi(a)) = \epsilon(2M + \Psi(b) - \Psi(a)).$$

Thus, f is  $\Psi$ -Riemann integrable.

4. Let  $\Psi : [a, b] \to R$  be non-decreasing, and  $f : [a, b] \to \mathbb{R}$  be bounded. Show that if f is  $\Psi$ -Riemann integrable, then the function  $f^2; [a, b] \to \mathbb{R}$  given by  $f^2(x) = (f(x))^2$  is  $\Psi$ -Riemann integrable.

**Proof.** Let  $m = \inf_{x \in [a,b]} f(x)$  and  $M = \sup_{x \in [a,b]} f(x)$ . Consider the function  $g : [m, M] \to \mathbb{R}$  defined by  $g(x) = x^2$ . Notice that g is uniformly continuous on [m, M], and  $f^2(x) = g(f(x)) = g \circ f(x)$ . Let  $\epsilon > 0$ , there exists  $0 < \delta < \epsilon$  such that  $|g(u) - g(v)| < \epsilon$  for all  $u, v \in [m, M]$  with  $|u - v| < \delta$ . Since f is  $\Psi$ -Riemann integrable, there exists a  $\delta' > 0$  such that  $\mathcal{U}(f|\Psi; \mathcal{C}) - \mathcal{L}(f|\Psi; \mathcal{C}) < \delta^2$  for all finite exact non-overlapping covers of [a, b] with  $\|\mathcal{C}\| < \delta'$ . Let  $\mathcal{C}$  be a finite exact non-overlapping covers of [a, b] with  $\|\mathcal{C}\| < \delta'$ . Define

$$\mathcal{G} = \{I \in \mathcal{C} : \sup_{x \in I} f(x) - \inf_{x \in I} f(x) < \delta\} \text{ and } \mathcal{B} = \{I \in \mathcal{C} : \sup_{x \in I} f(x) - \inf_{x \in I} f(x) \ge \delta\}.$$

Notice that if  $I \in \mathcal{G}$ , then  $\sup_{x \in I} g(f(x)) - \inf_{x \in I} g(f(x)) \le \epsilon$ . Now,

$$\delta \sum_{I \in \mathcal{B}} \Delta_I \Psi \leq \sum_{I \in \mathcal{B}} (\sup_{x \in I} f(x) - \inf_{x \in I} f(x)) \Delta_I \Psi$$
  
$$\leq \sum_{I \in \mathcal{C}} (\sup_{x \in I} f(x) - \inf_{x \in I} f(x)) \Delta_I \Psi$$
  
$$= \mathcal{U}(f|\Psi; \mathcal{C}) - \mathcal{L}(f|\Psi; \mathcal{C}) < \delta^2.$$

Thus,  $\sum_{I \in \mathcal{B}} \Delta_I \Psi < \delta < \epsilon$ . Finally,

$$\begin{aligned} \mathcal{U}(f^{2}|\Psi;\mathcal{C}) - \mathcal{L}(f^{2}|\Psi;\mathcal{C}) &= \mathcal{U}(g \circ f|\Psi;\mathcal{C}) - \mathcal{L}(g \circ f|\Psi;\mathcal{C}) \\ &= \sum_{I \in \mathcal{G}} (\sup_{x \in I} g(f(x)) - \inf_{x \in I} g(f(x))) \Delta_{I} \Psi \\ &+ \sum_{I \in \mathcal{B}} (\sup_{x \in I} g(f(x)) - \inf_{x \in I} g(f(x))) \Delta_{I} \Psi \\ &< \epsilon(\Psi(b) - \Psi(a)) + 2 \|g\|_{u}), \end{aligned}$$

where  $||g||_u = \sup_{u \in [m,M]} |g(u)|$ . Thus,  $\lim_{\|\mathcal{C}\| \to 0} \mathcal{U}(f^2|\Psi; \mathcal{C}) - \mathcal{L}(f^2|\Psi; \mathcal{C}) = 0$  and  $f^2$  is  $\Psi$ -Riemann integrable.