Measure and Integration Solutions 2

1. Let $a<s<b$, and suppose $f:[a, b] \rightarrow \mathbb{R}$ is bounded and continuous at s. Let $\Psi:[a, b] \rightarrow R$ be given by

$$
\Psi(x)= \begin{cases}0 & \text { if } a \leq x \leq s \\ 1 & \text { if } s<x \leq b .\end{cases}
$$

Show that f is Ψ-Riemann integrable, and $\int_{a}^{b} f(x) d \Psi(x)=f(s)$.
Proof. Let $\epsilon>0$. By continuity of f at s there exists a $\delta>0$ such that $\mid f(x)-$ $f(s) \mid<\epsilon$ for $|x-s|<\delta, x \in[a, b]$. Let \mathcal{C} be a finite exact non-overlapping cover of $[a, b]$ with $\|\mathcal{C}\|<\delta$. Notice that $\Delta_{I} \Psi=0$ for all $I \in \mathcal{C}$ with $s \notin I$. The point s belongs to at most two elements of \mathcal{C}. If s is a right end-point of some I, then $\Delta_{I} \Psi=0$. If s is a left end-point or an interior point of some I, then $\Delta_{I} \Psi=1$. Let I_{0} be the unique element of \mathcal{C} containing s as a left end-point or an interior point, then for any choice function ξ,

$$
\mathcal{R}(f \mid \Psi ; \mathcal{C}, \xi)=f\left(\xi\left(I_{0}\right)\right)
$$

Since $\|\mathcal{C}\|<\delta$, then

$$
|\mathcal{R}(f \mid \Psi ; \mathcal{C}, \xi)-f(s)|=\left|f\left(\xi\left(I_{0}\right)\right)-f(s)\right|<\epsilon .
$$

Thus, f is Ψ-Riemann integrable, and $\int_{a}^{b} f(x) d \Psi(x)=f(s)$.
2. Let $a=a_{0}<a_{1}<a_{2}<\cdots<a_{n}=b$, and suppose that the function $\Psi:[a, b] \rightarrow R$ has the constant value c_{i} on the interval $\left(a_{i-1}, a_{i}\right)$ for $i=1,2, \cdots, n$. Show that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is Ψ-Riemann integrable, and

$$
\int_{a}^{b} f(x) d \Psi(x)=\sum_{i=0}^{n} f\left(a_{i}\right) d_{i}
$$

where

$$
d_{i}= \begin{cases}c_{1}-\Psi(a) & \text { if } i=0 \\ c_{i+1}-c_{i} & \text { if } 1 \leq i \leq n-1 \\ \Psi(b)-c_{n} & \text { if } i=n .\end{cases}
$$

Proof. Let $\epsilon>0$. Since f is uniformly continuous on $[a, b]$, there exists a $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ for all $x, y \in[a, b]$ with $|x-y|<\delta$. Let \mathcal{C} be any finite exact non-overlapping cover of $[a, b]$ with $\|\mathcal{C}\|<\delta$. Assume with no loss of generality that the $a_{i}^{\prime} s$ are end-points of some of the intervals in \mathcal{C} (otherwise we refine \mathcal{C} further). Call these intervals $I_{0}, I_{1}^{-}, I_{1}^{+}, \ldots, I_{n-1}^{-}, I_{n-1}^{+}, I_{n}$, where I_{0} contains $a=a_{0}$ as a left
end point, I_{n} contains $a_{n}=b$ as a right end-point, and for $i=1,2, \ldots, n-1, I_{i}^{-}$ contains a_{i} as a right end-point, and I_{i}^{+}contains a_{i} as a left end-point. Notice that if $I \in \mathcal{C}$ with $a_{i} \notin I$ for all $i=0,1, \ldots, n$, then $\Delta_{I} \Psi=0$. Thus, for any choice function ξ we have,
$\mathcal{R}(f \mid \Psi ; \mathcal{C}, \xi)=f\left(\xi\left(I_{0}\right)\right) \Delta_{I_{0}} \Psi+\sum_{i=1}^{n-1}\left(f\left(\xi\left(I_{i}^{-}\right) \Delta_{I_{i}^{-}} \Psi+f\left(\xi\left(I_{i}^{+}\right)\right) \Delta_{I_{i}^{+}} \Psi\right)+f\left(\xi\left(I_{n}\right)\right) \Delta_{I_{n}} \Psi\right.$.
Now, $\Delta_{I_{0}} \Psi=c_{1}-\Psi(a), \Delta_{I_{n}} \Psi=\Psi(b)-c_{n}$ and for $i=1,2, \ldots, n-1, \Delta_{I_{i}^{-}} \Psi=$ $\Psi\left(a_{i}\right)-c_{i}$ and $\Delta_{I_{i}^{+}} \Psi=c_{i+1}-\Psi\left(a_{i}\right)$. Notice that $d_{i}=\left(c_{i+1}-\Psi\left(a_{i}\right)\right)-\left(\Psi\left(a_{i}\right)-c_{i}\right)$ for $i=1,2, \ldots, n-1$. Thus,

$$
\begin{aligned}
\left|\mathcal{R}(f \mid \Psi ; \mathcal{C}, \xi)-\sum_{i=0}^{n} f\left(a_{i}\right) d_{i}\right| & \leq \mid f\left(\xi\left(I_{0}\right)-f(a)| | c_{1}-\Psi(a) \mid\right. \\
& +\sum_{i=1}^{n-1} \mid f\left(\xi\left(I_{i}^{-}\right)-f\left(a_{i}\right)| | \Psi\left(a_{i}\right)-c_{i} \mid\right. \\
& +\sum_{i=1}^{n-1} \mid f\left(\xi\left(I_{i}^{+}\right)-f\left(a_{i}\right)| | \Psi\left(a_{i}\right)-c_{i+1} \mid\right. \\
& +\mid f\left(\xi\left(I_{n}\right)-f(b)| | \Psi(b)-c_{n} \mid\right. \\
& <\epsilon M,
\end{aligned}
$$

where $M=\left|c_{1}-\Psi(a)\right|+\sum_{i=1}^{n-1} \mid\left(\Psi\left(a_{i}\right)-c_{i}\left|+\sum_{i=1}^{n-1}\right|\left(\Psi\left(a_{i}\right)-c_{i+1}\left|+\left|\Psi(b)-c_{n}\right|\right.\right.\right.$. Thus, f is Ψ-Riemann integrable, and $\int_{a}^{b} f(x) d \Psi(x)=\sum_{i=0}^{n} f\left(a_{i}\right) d_{i}$.
3. Let $\Psi:[a, b] \rightarrow R$ be non-decreasing, and let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Show that f is Ψ-Riemann integrable if and only if for every $\epsilon>0$, there exists a $\delta>0$ such that

$$
\sum_{\left\{I \in \mathcal{C}: \sup _{x \in I} f(x)-\inf _{x \in I} f(x) \geq \epsilon\right\}} \Delta_{I} \Psi<\epsilon
$$

for all finite non-overlapping exact covers \mathcal{C} of $[a, b]$ such that $\|\mathcal{C}\|<\delta$.
Proof. Suppose f is Ψ-Riemann integrable, then

$$
\lim _{\|\mathcal{C}\| \rightarrow 0} \mathcal{U}(f \mid \Psi ; \mathcal{C})=\lim _{\|\mathcal{C}\| \rightarrow 0} \mathcal{L}(f \mid \Psi ; \mathcal{C})=\int_{[a, b]} f(x) d \Psi(x)
$$

Thus, given $\epsilon>0$ there exists a $\delta>0$ such that

$$
\mathcal{U}(f \mid \Psi ; \mathcal{C})-\mathcal{L}(f \mid \Psi ; \mathcal{C})<\epsilon^{2}
$$

for all finite exact non-overlapping covers of $[a, b]$ such that $\|\mathcal{C}\|<\delta$. Let $\mathcal{B}=\{I \in$ $\left.\mathcal{C}: \sup _{x \in I} f(x)-\inf _{x \in I} f(x) \geq \epsilon\right\}$. Then,

$$
\begin{aligned}
\epsilon \sum_{I \in \mathcal{B}} \Delta_{I} \Psi & \leq \sum_{I \in \mathcal{B}} \sup _{x \in I} f(x)-\inf _{x \in I} f(x) \Delta_{I} \Psi \\
& \leq \sum_{I \in \mathcal{C}} \sup _{x \in I} f(x)-\inf _{x \in I} f(x) \Delta_{I} \Psi \\
& =\mathcal{U}(f \mid \Psi ; \mathcal{C})-\mathcal{L}(f \mid \Psi ; \mathcal{C})<\epsilon^{2}
\end{aligned}
$$

This implies that $\sum_{I \in \mathcal{B}} \Delta_{I} \Psi<\epsilon$.
Conversely, let $\epsilon>0$. By hypothesis, there exists a $\delta>0$ such that

$$
\sum_{\left\{I \in \mathcal{C}: \sup _{x \in I} f(x)-\inf _{x \in I} f(x) \geq \epsilon\right\}} \Delta_{I} \Psi<\epsilon
$$

for all finite non-overlapping exact covers \mathcal{C} of $[a, b]$ such that $\|\mathcal{C}\|<\delta$. Let $\mathcal{B}=$ $\left\{I \in \mathcal{C}: \sup _{x \in I} f(x)-\inf _{x \in I} f(x) \geq \epsilon\right\}$ and $\mathcal{G}=\mathcal{C} \backslash \mathcal{B}$. Set $M=\sup _{x \in[a, b]}|f(x)|$, then

$$
\begin{aligned}
\mathcal{U}(f \mid \Psi ; \mathcal{C})-\mathcal{L}(f \mid \Psi ; \mathcal{C}) & =\sum_{I \in \mathcal{B}} \sup _{x \in I} f(x)-\inf _{x \in I} f(x) \Delta_{I} \Psi \\
& +\sum_{I \in \mathcal{G}} \sup _{x \in I} f(x)-\inf _{x \in I} f(x) \Delta_{I} \Psi \\
& <2 M \epsilon+\epsilon(\Psi(b)-\Psi(a)) \\
& =\epsilon(2 M+\Psi(b)-\Psi(a)) .
\end{aligned}
$$

Thus, f is Ψ-Riemann integrable.
4. Let $\Psi:[a, b] \rightarrow R$ be non-decreasing, and $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Show that if f is Ψ-Riemann integrable, then the function $f^{2} ;[a, b] \rightarrow \mathbb{R}$ given by $f^{2}(x)=(f(x))^{2}$ is Ψ-Riemann integrable.
Proof. Let $m=\inf _{x \in[a, b]} f(x)$ and $M=\sup _{x \in[a, b]} f(x)$. Consider the function $g:[m, M] \rightarrow$ \mathbb{R} defined by $g(x)=x^{2}$. Notice that g is uniformly continuous on $[m, M]$, and $f^{2}(x)=g(f(x))=g \circ f(x)$. Let $\epsilon>0$, there exists $0<\delta<\epsilon$ such that $|g(u)-g(v)|<$ ϵ for all $u, v \in[m, M]$ with $|u-v|<\delta$. Since f is Ψ-Riemann integrable, there exists a $\delta^{\prime}>0$ such that $\mathcal{U}(f \mid \Psi ; \mathcal{C})-\mathcal{L}(f \mid \Psi ; \mathcal{C})<\delta^{2}$ for all finite exact non-overlapping covers of $[a, b]$ with $\|\mathcal{C}\|<\delta^{\prime}$. Let \mathcal{C} be a finite exact non-overlapping covers of $[a, b]$ with $\|\mathcal{C}\|<\delta^{\prime}$. Define

$$
\mathcal{G}=\left\{I \in \mathcal{C}: \sup _{x \in I} f(x)-\inf _{x \in I} f(x)<\delta\right\} \text { and } \mathcal{B}=\left\{I \in \mathcal{C}: \sup _{x \in I} f(x)-\inf _{x \in I} f(x) \geq \delta\right\} .
$$

Notice that if $I \in \mathcal{G}$, then $\sup _{x \in I} g(f(x))-\inf _{x \in I} g(f(x)) \leq \epsilon$. Now,

$$
\begin{aligned}
\delta \sum_{I \in \mathcal{B}} \Delta_{I} \Psi & \leq \sum_{I \in \mathcal{B}}\left(\sup _{x \in I} f(x)-\inf _{x \in I} f(x)\right) \Delta_{I} \Psi \\
& \leq \sum_{I \in \mathcal{C}}\left(\sup _{x \in I} f(x)-\inf _{x \in I} f(x)\right) \Delta_{I} \Psi \\
& =\mathcal{U}(f \mid \Psi ; \mathcal{C})-\mathcal{L}(f \mid \Psi ; \mathcal{C})<\delta^{2} .
\end{aligned}
$$

Thus, $\sum_{I \in \mathcal{B}} \Delta_{I} \Psi<\delta<\epsilon$. Finally,

$$
\begin{aligned}
\mathcal{U}\left(f^{2} \mid \Psi ; \mathcal{C}\right)-\mathcal{L}\left(f^{2} \mid \Psi ; \mathcal{C}\right) & =\mathcal{U}(g \circ f \mid \Psi ; \mathcal{C})-\mathcal{L}(g \circ f \mid \Psi ; \mathcal{C}) \\
& =\sum_{I \in \mathcal{G}}\left(\sup _{x \in I} g(f(x))-\inf _{x \in I} g(f(x))\right) \Delta_{I} \Psi \\
& +\sum_{I \in \mathcal{B}}\left(\sup _{x \in I} g(f(x))-\inf _{x \in I} g(f(x))\right) \Delta_{I} \Psi \\
& \left.<\epsilon(\Psi(b)-\Psi(a))+2\|g\|_{u}\right),
\end{aligned}
$$

where $\|g\|_{u}=\sup _{u \in[m, M]}|g(u)|$. Thus, $\lim _{\|\mathcal{C}\| \rightarrow 0} \mathcal{U}\left(f^{2} \mid \Psi ; \mathcal{C}\right)-\mathcal{L}\left(f^{2} \mid \Psi ; \mathcal{C}\right)=0$ and f^{2} is Ψ-Riemann integrable.

