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1. Let a < s < b, and suppose f : [a, b] → R is bounded and continuous at s. Let
Ψ : [a, b] → R be given by

Ψ(x) =

{

0 if a ≤ x ≤ s
1 if s < x ≤ b.

Show that f is Ψ-Riemann integrable, and
∫ b

a
f(x)dΨ(x) = f(s).

Proof. Let ε > 0. By continuity of f at s there exists a δ > 0 such that |f(x) −
f(s)| < ε for |x − s| < δ, x ∈ [a, b]. Let C be a finite exact non-overlapping cover
of [a, b] with ‖C‖ < δ. Notice that ∆IΨ = 0 for all I ∈ C with s /∈ I. The point
s belongs to at most two elements of C. If s is a right end-point of some I, then
∆IΨ = 0. If s is a left end-point or an interior point of some I, then ∆IΨ = 1. Let
I0 be the unique element of C containing s as a left end-point or an interior point,
then for any choice function ξ,

R(f |Ψ; C, ξ) = f(ξ(I0)).

Since ‖C‖ < δ, then

|R(f |Ψ; C, ξ)− f(s)| = |f(ξ(I0)) − f(s)| < ε.

Thus, f is Ψ-Riemann integrable, and
∫ b

a
f(x)dΨ(x) = f(s).

2. Let a = a0 < a1 < a2 < · · · < an = b, and suppose that the function Ψ : [a, b] → R
has the constant value ci on the interval (ai−1, ai) for i = 1, 2, · · · , n. Show that if
f : [a, b] → R is continuous, then f is Ψ-Riemann integrable, and

∫ b

a

f(x)dΨ(x) =

n
∑

i=0

f(ai)di,

where

di =







c1 − Ψ(a) if i = 0
ci+1 − ci if 1 ≤ i ≤ n − 1
Ψ(b) − cn if i = n.

Proof. Let ε > 0. Since f is uniformly continuous on [a, b], there exists a δ > 0 such
that |f(x) − f(y)| < ε for all x, y ∈ [a, b] with |x − y| < δ. Let C be any finite exact
non-overlapping cover of [a, b] with ‖C‖ < δ. Assume with no loss of generality that
the a′

is are end-points of some of the intervals in C (otherwise we refine C further).
Call these intervals I0, I

−
1 , I+

1 , . . . , I−
n−1, I

+
n−1, In, where I0 contains a = a0 as a left
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end point, In contains an = b as a right end-point, and for i = 1, 2, . . . , n − 1, I−
i

contains ai as a right end-point, and I+
i contains ai as a left end-point. Notice that

if I ∈ C with ai /∈ I for all i = 0, 1, . . . , n, then ∆IΨ = 0. Thus, for any choice
function ξ we have,

R(f |Ψ; C, ξ) = f(ξ(I0))∆I0Ψ+
n−1
∑

i=1

(f(ξ(I−
i )∆I−

i

Ψ+f(ξ(I+
i ))∆I+

i

Ψ)+f(ξ(In))∆In
Ψ.

Now, ∆I0Ψ = c1 − Ψ(a), ∆In
Ψ = Ψ(b) − cn and for i = 1, 2, . . . , n − 1, ∆I−

i

Ψ =

Ψ(ai) − ci and ∆I+

i

Ψ = ci+1 − Ψ(ai). Notice that di = (ci+1 − Ψ(ai)) − (Ψ(ai) − ci)
for i = 1, 2, . . . , n − 1. Thus,

|R(f |Ψ; C, ξ)−

n
∑

i=0

f(ai)di| ≤ |f(ξ(I0) − f(a)||c1 − Ψ(a)|

+

n−1
∑

i=1

|f(ξ(I−
i ) − f(ai)||Ψ(ai) − ci|

+
n−1
∑

i=1

|f(ξ(I+
i ) − f(ai)||Ψ(ai) − ci+1|

+ |f(ξ(In) − f(b)||Ψ(b) − cn|

< εM,

where M = |c1 − Ψ(a)| +
∑n−1

i=1 |(Ψ(ai) − ci| +
∑n−1

i=1 |(Ψ(ai) − ci+1| + |Ψ(b) − cn|.

Thus, f is Ψ-Riemann integrable, and
∫ b

a
f(x)dΨ(x) =

∑n

i=0 f(ai)di.

3. Let Ψ : [a, b] → R be non-decreasing, and let f : [a, b] → R be bounded. Show that
f is Ψ-Riemann integrable if and only if for every ε > 0, there exists a δ > 0 such
that

∑

{I∈C : supx∈I f(x)−infx∈I f(x)≥ε}

∆IΨ < ε

for all finite non-overlapping exact covers C of [a, b] such that ||C|| < δ.

Proof. Suppose f is Ψ-Riemann integrable, then

lim
‖C‖→0

U(f |Ψ; C) = lim
‖C‖→0

L(f |Ψ; C) =

∫

[a,b]

f(x)dΨ(x).

Thus, given ε > 0 there exists a δ > 0 such that

U(f |Ψ; C) − L(f |Ψ; C) < ε2

for all finite exact non-overlapping covers of [a, b] such that ‖C‖ < δ. Let B = {I ∈
C : supx∈I f(x) − infx∈I f(x) ≥ ε}. Then,

ε
∑

I∈B

∆IΨ ≤
∑

I∈B

sup
x∈I

f(x) − inf
x∈I

f(x)∆IΨ

≤
∑

I∈C

sup
x∈I

f(x) − inf
x∈I

f(x)∆IΨ

= U(f |Ψ; C) − L(f |Ψ; C) < ε2.
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This implies that
∑

I∈B ∆IΨ < ε.

Conversely, let ε > 0. By hypothesis, there exists a δ > 0 such that
∑

{I∈C : supx∈I f(x)−infx∈I f(x)≥ε}

∆IΨ < ε

for all finite non-overlapping exact covers C of [a, b] such that ||C|| < δ. Let B =
{I ∈ C : supx∈I f(x) − infx∈I f(x) ≥ ε} and G = C \ B. Set M = supx∈[a,b] |f(x)|,
then

U(f |Ψ; C) − L(f |Ψ; C) =
∑

I∈B

sup
x∈I

f(x) − inf
x∈I

f(x)∆IΨ

+
∑

I∈G

sup
x∈I

f(x) − inf
x∈I

f(x)∆IΨ

< 2Mε + ε(Ψ(b) − Ψ(a))

= ε(2M + Ψ(b) − Ψ(a)).

Thus, f is Ψ-Riemann integrable.

4. Let Ψ : [a, b] → R be non-decreasing, and f : [a, b] → R be bounded. Show that if f
is Ψ-Riemann integrable, then the function f 2; [a, b] → R given by f 2(x) = (f(x))2

is Ψ-Riemann integrable.

Proof. Let m = inf
x∈[a,b]

f(x) and M = sup
x∈[a,b]

f(x). Consider the function g : [m, M ] →

R defined by g(x) = x2. Notice that g is uniformly continuous on [m, M ], and
f 2(x) = g(f(x)) = g◦f(x). Let ε > 0, there exists 0 < δ < ε such that |g(u)−g(v)| <
ε for all u, v ∈ [m, M ] with |u−v| < δ. Since f is Ψ-Riemann integrable, there exists
a δ′ > 0 such that U(f |Ψ; C) − L(f |Ψ; C) < δ2 for all finite exact non-overlapping
covers of [a, b] with ‖C‖ < δ′. Let C be a finite exact non-overlapping covers of [a, b]
with ‖C‖ < δ′. Define

G = {I ∈ C : sup
x∈I

f(x) − inf
x∈I

f(x) < δ} and B = {I ∈ C : sup
x∈I

f(x) − inf
x∈I

f(x) ≥ δ}.

Notice that if I ∈ G, then sup
x∈I

g(f(x)) − inf
x∈I

g(f(x)) ≤ ε. Now,

δ
∑

I∈B

∆IΨ ≤
∑

I∈B

(sup
x∈I

f(x) − inf
x∈I

f(x))∆IΨ

≤
∑

I∈C

(sup
x∈I

f(x) − inf
x∈I

f(x))∆IΨ

= U(f |Ψ; C) − L(f |Ψ; C) < δ2.

Thus,
∑

I∈B

∆IΨ < δ < ε. Finally,

U(f 2|Ψ; C) − L(f 2|Ψ; C) = U(g ◦ f |Ψ; C) − L(g ◦ f |Ψ; C)

=
∑

I∈G

(sup
x∈I

g(f(x)) − inf
x∈I

g(f(x)))∆IΨ

+
∑

I∈B

(sup
x∈I

g(f(x)) − inf
x∈I

g(f(x)))∆IΨ

< ε(Ψ(b) − Ψ(a)) + 2‖g‖u),
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where ‖g‖u = sup
u∈[m,M ]

|g(u)|. Thus, lim
‖C‖→0

U(f 2|Ψ; C) − L(f 2|Ψ; C) = 0 and f 2 is

Ψ-Riemann integrable.
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