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1. Suppose ¥ : [a,b] — R is non-decreasing, and f : [a,b] — R is U-Riemann in-
tegrable. Assume that m < M, and m < f(x) < M. Let g : [m, M] — R be
continuous. Show that the function g o f : [a,b] — R is U-Riemann integrable.

Proof Let € > 0, by uniform continuity of g there exists 0 < < € so that |g(u) —
g(v)| < e for all u,v € [m, M| with |u — v| < 0. Since f is WU-Riemann integrable,
there exists &' > 0 so that U(f;C) — L(f;C) < 6% for all finite non-overlapping
exact covers C of [a,b] such that ||C|| < ¢’. For any C with ||C|| < ', let A= {I €
C : sup,¢; f(z) — infer f(x) < 0}, and B = C \ A. Notice that if I € A, then
sup,c; 9(f(x)) —infer g(f(x)) < €. Furthermore,

5y AU < Z(Supf(ﬁ)—iféf;f(x))ﬁl‘l’
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< 3 (sup f(a) — inf f(2) A0
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= U(f;C) = L(f;C) <o
Thus, > ;.5 A7V < 6, and,
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< €(¥(b) = W(a)) + 2[gl[ud < e(W(b) — ¥(a) + 2|[gl|u)-

Therefore, g o f is U-Riemann integrable.

+ Z (supg(f(:l:)) - ggg(f(@)

2. Let A, B C RY. Prove the following.

(a) If |A]c = 0, then |[AU B|. = |B|..

(b) If |JAAB|. = 0, then |AU B|, = |A|. = |Bl. = |AN B|..
Proof (a) Suppose |A|. = 0, then |B|. < |AU B|. < |A|. + |Ble = |B|e. Thus,
|AU B|. = |B|e.

Proof (b) Suppose |AAB|. = 0. Since AUB = (AAB)U(ANB), it follows from part
(a) that |[AUB|. = |AN Bl.. Furthermore, since AAB = (A\ B)U(B\ A), it follows
that |[A\ Bl. = |B\ Al = 0. Now A = (A\B)U(ANB) and B= (B\A)U(ANB),
hence by part (a) |Al. = |Bl. =|ANB|. = |AU B|e.
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3. Let K, Ky be compact subsets of R" such that K; N Ky = (). Show that

| Ky U Ks|e = | Ki|e + | K2le.

Proof By Lemma 2.1.2, it is enough to show that dist(K;, K3) > 0. The proof is
done by contradiction. Suppose that dist(K7, K3) = 0, then there exist sequences
(xn) € K; and (y,) € K, such that |z, — y,| — 0. Since K is compact, then the
sequence (z,) has a convergent subsequence (z,;) converging to say x € K;. But
then,
‘ynj - £C| < ‘ynj - xnj‘ + |xnj o £C| — 0.

Thus, (y,,) — . Since (y,;) € Ky and K, is closed, then x € K. Hence, z €
K, N K,, which is a contradiction to the assumption that K; N Ky = (). Thus,
dist(K, K3) = 0, and by lemma 2.1.2

| K1 U Ks|e = |Kile + | Kale.
4. Let F be a closed subset of RY. For each n > 1, let
N 1
G, ={x eR" : |z —y| < — for some y € F'}.
n

(a) Show that G,, is open for each n > 1.
(b) Show that F' = ("~ G,.
(¢) Conclude that F C Os. Here F denotes the collection of all closed subset of

RY, and Os denotes the collections of all subsets of R" that can be written as
the countable intersection of open setsets of RV,

Proof (a) Let H, = RV \ G,, then H, = {z € RN :infycp |v —y| > =}, We show
that H, is closed. To this end, let (z,,) be a sequence in H,, converging to x € RY.
We must show that x € H,,. Let € > 0, then there exists an integer M > 0 such that
|z, — x| < € for all m > M. Pick any m > M, then for all y € F

o =] 2 [t =yl ~ o = | = =

Since € > 0 is arbitrary, it follows that [z—y| > L forally € F,i.e. infyep [z—y| > L.
Thus, x € H,, which implies that H,, is closed, and hence, G,, is open.

Proof (b) Clearly, F C G, for all n, hence F' C (2, G,. Now suppose that
z € ()., Gy, then for each n there exists y,, € F such that |z — y,| < 1/n. Then,
(yn) is a sequence in F' converging to x Since F' is closed, this implies that z € F.
Thus, (,—, G, C F. Therefore, F =", G,.

Proof (c) By parts (a) and (b), each closed set F is of the form ()~ , G, with G,
open ie. (2, G, € Os.



