Measure and Integration Solutions 3

1. Suppose $\Psi:[a, b] \rightarrow \mathbb{R}$ is non-decreasing, and $f:[a, b] \rightarrow \mathbb{R}$ is Ψ-Riemann integrable. Assume that $m<M$, and $m \leq f(x) \leq M$. Let $g:[m, M] \rightarrow \mathbb{R}$ be continuous. Show that the function $g \circ f:[a, b] \rightarrow \mathbb{R}$ is Ψ-Riemann integrable.
Proof Let $\epsilon>0$, by uniform continuity of g there exists $0<\delta<\epsilon$ so that $\mid g(u)-$ $g(v) \mid<\epsilon$ for all $u, v \in[m, M]$ with $|u-v|<\delta$. Since f is Ψ-Riemann integrable, there exists $\delta^{\prime}>0$ so that $\mathcal{U}(f ; \mathcal{C})-\mathcal{L}(f ; \mathcal{C})<\delta^{2}$ for all finite non-overlapping exact covers \mathcal{C} of $[a, b]$ such that $\|\mathcal{C}\|<\delta^{\prime}$. For any \mathcal{C} with $\|\mathcal{C}\|<\delta^{\prime}$, let $\mathcal{A}=\{I \in$ $\left.\mathcal{C}: \sup _{x \in I} f(x)-\inf _{x \in I} f(x)<\delta\right\}$, and $\mathcal{B}=\mathcal{C} \backslash \mathcal{A}$. Notice that if $I \in \mathcal{A}$, then $\sup _{x \in I} g(f(x))-\inf _{x \in I} g(f(x)) \leq \epsilon$. Furthermore,

$$
\begin{aligned}
\delta \sum_{I \in \mathcal{B}} \Delta_{I} \Psi & \leq \sum_{I \in \mathcal{B}}\left(\sup _{x \in I} f(x)-\inf _{x \in I} f(x)\right) \Delta_{I} \Psi \\
& \leq \sum_{I \in \mathcal{C}}\left(\sup _{x \in I} f(x)-\inf _{x \in I} f(x)\right) \Delta_{I} \Psi \\
& =\mathcal{U}(f ; \mathcal{C})-\mathcal{L}(f ; \mathcal{C})<\delta^{2}
\end{aligned}
$$

Thus, $\sum_{I \in \mathcal{B}} \Delta_{I} \Psi<\delta$, and,

$$
\begin{aligned}
\mathcal{U}(g \circ f ; \mathcal{C})-\mathcal{L}(g \circ f ; \mathcal{C}) & =\sum_{I \in \mathcal{A}}\left(\sup _{x \in I} g(f(x))-\inf _{x \in I} g(f(x))\right) \Delta_{I} \Psi \\
& +\sum_{I \in \mathcal{B}}\left(\sup _{x \in I} g(f(x))-\inf _{x \in I} g(f(x))\right) \Delta_{I} \Psi \\
& <\epsilon(\Psi(b)-\Psi(a))+2\|g\|_{u} \delta<\epsilon\left(\Psi(b)-\Psi(a)+2\|g\|_{u}\right) .
\end{aligned}
$$

Therefore, $g \circ f$ is Ψ-Riemann integrable.
2. Let $A, B \subseteq \mathbb{R}^{N}$. Prove the following.
(a) If $|A|_{e}=0$, then $|A \cup B|_{e}=|B|_{e}$.
(b) If $|A \Delta B|_{e}=0$, then $|A \cup B|_{e}=|A|_{e}=|B|_{e}=|A \cap B|_{e}$.

Proof (a) Suppose $|A|_{e}=0$, then $|B|_{e} \leq|A \cup B|_{e} \leq|A|_{e}+|B|_{e}=|B|_{e}$. Thus, $|A \cup B|_{e}=|B|_{e}$.
Proof (b) Suppose $|A \Delta B|_{e}=0$. Since $A \cup B=(A \Delta B) \cup(A \cap B)$, it follows from part (a) that $|A \cup B|_{e}=|A \cap B|_{e}$. Furthermore, since $A \Delta B=(A \backslash B) \cup(B \backslash A)$, it follows that $|A \backslash B|_{e}=|B \backslash A|_{e}=0$. Now $A=(A \backslash B) \cup(A \cap B)$ and $B=(B \backslash A) \cup(A \cap B)$, hence by part (a) $|A|_{e}=|B|_{e}=|A \cap B|_{e}=|A \cup B|_{e}$.
3. Let K_{1}, K_{2} be compact subsets of \mathbb{R}^{n} such that $K_{1} \cap K_{2}=\emptyset$. Show that

$$
\left|K_{1} \cup K_{2}\right|_{e}=\left|K_{1}\right|_{e}+\left|K_{2}\right|_{e} .
$$

Proof By Lemma 2.1.2, it is enough to show that $\operatorname{dist}\left(K_{1}, K_{2}\right)>0$. The proof is done by contradiction. Suppose that $\operatorname{dist}\left(K_{1}, K_{2}\right)=0$, then there exist sequences $\left(x_{n}\right) \subseteq K_{1}$ and $\left(y_{n}\right) \subseteq K_{2}$ such that $\left|x_{n}-y_{n}\right| \rightarrow 0$. Since K_{1} is compact, then the sequence $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{j}}\right)$ converging to say $x \in K_{1}$. But then,

$$
\left|y_{n_{j}}-x\right| \leq\left|y_{n_{j}}-x_{n_{j}}\right|+\left|x_{n_{j}}-x\right| \rightarrow 0 .
$$

Thus, $\left(y_{n_{j}}\right) \rightarrow x$. Since $\left(y_{n_{j}}\right) \subseteq K_{2}$ and K_{2} is closed, then $x \in K_{2}$. Hence, $x \in$ $K_{1} \cap K_{2}$, which is a contradiction to the assumption that $K_{1} \cap K_{2}=\emptyset$. Thus, $\operatorname{dist}\left(K_{1}, K_{2}\right)=0$, and by lemma 2.1.2

$$
\left|K_{1} \cup K_{2}\right|_{e}=\left|K_{1}\right|_{e}+\left|K_{2}\right|_{e} .
$$

4. Let F be a closed subset of \mathbb{R}^{N}. For each $n \geq 1$, let

$$
G_{n}=\left\{x \in \mathbb{R}^{N}:|x-y|<\frac{1}{n} \text { for some } y \in F\right\} .
$$

(a) Show that G_{n} is open for each $n \geq 1$.
(b) Show that $F=\bigcap_{n=1}^{\infty} G_{n}$.
(c) Conclude that $\mathcal{F} \subseteq \mathcal{O}_{\delta}$. Here \mathcal{F} denotes the collection of all closed subset of \mathbb{R}^{N}, and \mathcal{O}_{δ} denotes the collections of all subsets of \mathbb{R}^{N} that can be written as the countable intersection of open setsets of \mathbb{R}^{N}.

Proof (a) Let $H_{n}=\mathbb{R}^{N} \backslash G_{n}$, then $H_{n}=\left\{x \in \mathbb{R}^{N}: \inf _{y \in F}|x-y| \geq \frac{1}{n}\right\}$. We show that H_{n} is closed. To this end, let $\left(x_{m}\right)$ be a sequence in H_{n} converging to $x \in \mathbb{R}^{N}$. We must show that $x \in H_{n}$. Let $\epsilon>0$, then there exists an integer $M>0$ such that $\left|x_{m}-x\right|<\epsilon$ for all $m \geq M$. Pick any $m \geq M$, then for all $y \in F$

$$
|x-y| \geq\left|x_{m}-y\right|-\left|x-x_{m}\right| \geq \frac{1}{n}-\epsilon .
$$

Since $\epsilon>0$ is arbitrary, it follows that $|x-y| \geq \frac{1}{n}$ for all $y \in F$, i.e. $\inf _{y \in F}|x-y| \geq \frac{1}{n}$. Thus, $x \in H_{n}$ which implies that H_{n} is closed, and hence, G_{n} is open.
Proof (b) Clearly, $F \subseteq G_{n}$ for all n, hence $F \subseteq \bigcap_{n=1}^{\infty} G_{n}$. Now suppose that $x \in \bigcap_{n=1}^{\infty} G_{n}$, then for each n there exists $y_{n} \in F$ such that $\left|x-y_{n}\right|<1 / n$. Then, $\left(y_{n}\right)$ is a sequence in F converging to x Since F is closed, this implies that $x \in F$. Thus, $\bigcap_{n=1}^{\infty} G_{n} \subseteq F$. Therefore, $F=\bigcap_{n=1}^{\infty} G_{n}$.
Proof (c) By parts (a) and (b), each closed set F is of the form $\bigcap_{n=1}^{\infty} G_{n}$ with G_{n} open i.e. $\bigcap_{n=1}^{\infty} G_{n} \in \mathcal{O}_{\delta}$.

