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1. Suppose A1, A2 ⊆ R
N are Lebesgue measurable.

(a) Show that if A1 ⊆ A2 and |A1| < ∞, then |A2 \ A1| = |A2| − |A1|.

(b) Show that if |A1 ∩ A2| < ∞, then |A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|.

Proof (a) A2 = A1 ∪ (A2 \ A1) (a disjoint union), hence

|A2| = |A1| + |A2 \ A1|.

If |A1| < ∞, then we can subtract |A1| from both sides leading to

|A2 \ A1| = |A2| − |A1|.

Proof (b) First notice that A1 ∩ A2 ⊆ A2 and |A1 ∩ A2| < ∞, hence by part (a)

|A2 \ (A1 ∩ A2)| = |A2| − |A1 ∩ A2|.

Now, A1 ∪ A2 = A1 ∪ (A2 \ (A1 ∩ A2)) (a disjoint union), hence

|A1 ∪ A2| = |A1| + |A2 \ (A1 ∩ A2)| = |A1| + |A2| − |A1 ∩ A2|.

2. Let {Γn}
∞

n=1
be a sequence of Lebesgue measurable subsets of R

N .

(a) Show that if |Γn ∩ Γm| = 0 for n 6= m, then |
⋃

∞

n=1
Γn| =

∑
∞

n=1
|Γn|.

(b) Show that if Γ1 ⊆ Γ2 ⊆ . . ., then |
⋃

∞

n=1
Γn| = limn→∞

|Γn|.

(c) Show that if if |Γ1| < ∞ and Γ1 ⊇ Γ2 ⊇ . . ., then |
⋂

∞

n=1
Γn| = limn→∞

|Γn|.

Proof (a) Let Γ0 = ∅, A1 = Γ1, B1 = ∅. For n ≥ 2, set An = Γn \
⋃

n−1

m=1
Γm and

Bn = Γn ∩
⋃

n−1

m=1
Γm =

⋃
n−1

m=1
(Γn ∩ Γm). Then,

– Γn = An ∪ Bn for all n ≥ 1,

– An ∩ Am = ∅ for m 6= n,

– |Bn| = 0 for all n ≥ 1 (since |Γn ∩ Γm| = 0 for n 6= m), hence |Γn| = |An| for all
n ≥ 1,

–
⋃

∞

n=1
An =

⋃
∞

n=1
Γn: clearly the left handside is a subset of the right handside.

Now, let x ∈
⋃

∞

n=1
Γn, then x ∈ Γn for some n. Let n0 be the smallest positive

integer such that x ∈ Γn0
, then x ∈ An0

⊆
⋃

∞

n=1
An.
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Hence,

|
∞⋃

n=1

Γn| = |
∞⋃

n=1

An| =
∞∑

n=1

|An| =
∞∑

n=1

|Γn|.

Proof (b) Let Γ0 = ∅ and An = Γn \ Γn−1 for n ≥ 1. Then,

– An ∩ Am = ∅ for m 6= n,

– Γn =
⋃

n

m=1
An for all n ≥ 1,

–
⋃

∞

n=1
Γn =

⋃
∞

n=1
An.

Hence,

lim
n→∞

|Γn| = lim
n→∞

|
n⋃

m=1

Am| = lim
n→∞

n∑

m=1

|Am| =
∞∑

m=1

|Am| = |
∞⋃

n=1

An| = |
∞⋃

n=1

Γn|.

Proof (c) Let En = Γ1 \ Γn for n ≥ 1. Then,

– E1 ⊆ E2 ⊆ . . . ,

– |En| = |Γ1| − |Γn| (since Γn ⊆ Γ1 and |Γn| < ∞, see part (a) of exercise 1),

–
⋃

∞

n=1
En = Γ1\

⋂
∞

n=1
Γn, and hence |

⋃
∞

n=1
En| = |Γ1|−|

⋂
∞

n=1
Γn| (since |

⋂
∞

n=1
Γn| <

∞),

By part (b),

|
∞⋃

n=1

En| = lim
n→∞

En.

Hence, |
⋂

∞

n=1
Γn| = limn→∞

|Γn|.

3. Let A ⊆ R
N be Lebesgue measurable. Show that there exists a sequence K1 ⊆

K2 ⊆ K3 ⊆ . . . of compact subsets of A such that |A \
⋃

∞

n=1
Kn| = 0.

Proof Since A is measurable, then Ac is also measurable. For each n ≥ 1, there
exists an open subset Gn such that Ac ⊆ Gn and |Gn \ Ac| < 1/n. Let Fn = Gc

n
,

then Fn is a closed subset of A and |A \ Fn| = |Gn \ Ac| < 1/n. For n ≥ 1, let
Kn =

⋃
n

m=0
Fm ∩B(0, n), where B(0, n) is the closed ball with centre the origin and

radius n. Then,

– Kn is a compact subset of A (since it is closed and bounded),

– K1 ⊆ K2 ⊆ . . . ,

–
⋃

∞

n=0
Fn =

⋃
∞

n=0
Kn: clearly the right handside is contained in the left handside.

Now, let x ∈
⋃

∞

n=0
Fn, then x ∈ Fn for some n. Also, there exists an integer m

such that x ∈ B(0, m). If m ≤ n, then x ∈ Kn ⊆
⋃

∞

n=0
Kn, and if m > n, then

x ∈ Km ⊆
⋃

∞

n=0
Kn.

Thus, for each n ≥ 1,

|A \
∞⋃

n=1

Kn| = |A \
∞⋃

n=1

Fn| ≤ |A \ Fn| < 1/n.

Taking the limit as n → ∞, one gets |A \
⋃

∞

n=1
Kn| = 0.
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