Universiteit Utrecht

Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Measure and Integration Exercises 6

1. Let *E* be an uncountable set, and $\mathcal{B} = \{A \subseteq E : A \text{ or } A^c \text{ is countable}\}$. Show that \mathcal{B} is a σ -algebra over *E*.

Proof It is clear that $\emptyset \in \mathcal{B}$, and if $A \in \mathcal{B}$, then $A^c \in \mathcal{B}$. We need to show that \mathcal{B} is closed under countable unions. Let $A_1, A_2, \ldots \in \mathcal{B}$, If A_n is countable for each n, then $\bigcup_{n=1}^{\infty} A_n$ is countable, and hence $\bigcup_{n=1}^{\infty} A_n \in \mathcal{B}$. Suppose there exists an i such that A_i is uncountable. Since $A_i \in \mathcal{B}$, then A_i^c must be countable. Now, $(\bigcup_{n=1}^{\infty} A_n)^c = \bigcap_{n=1}^{\infty} A_n^c \subseteq A_i^c$. Thus, $(\bigcup_{n=1}^{\infty} A_n)^c$ is countable and hence $\bigcup_{n=1}^{\infty} A_n \in \mathcal{B}$. This shows that \mathcal{B} is a σ -algebra over E.

- 2. Let *E* be a set, and $C \subseteq \mathcal{P}(E)$. Consider $\sigma(E; C)$, the smallest σ -algebra over *E* containing C, and let \mathcal{D} be the collection of sets $A \in \sigma(E; C)$ with the property that there exists a countable collection $C_0 \subseteq C$ (depending on *A*) such that $A \in \sigma(E; C_0)$.
 - (a) Show that \mathcal{D} is a σ -algebra over E.
 - (b) Show that $\mathcal{D} = \sigma(E; \mathcal{C})$.

Proof (a): Clearly $\emptyset \in \mathcal{D}$ since \emptyset belongs to every σ -algebra. Let $A \in \mathcal{D}$, then there is a countable collection $\mathcal{C}_0 \subseteq \mathcal{C}$ such that $A \in \sigma(E; \mathcal{C}_0)$. But then $A^c \in \sigma(E; \mathcal{C}_0)$, hence $A^c \in \mathcal{D}$. Finally, let $\{A_n\}$ be in \mathcal{D} , then for each n there exists a countable collection $\mathcal{C}_n \subseteq \mathcal{C}$ such that $A_n \in \sigma(E; \mathcal{C}_n)$. Let $\mathcal{C}_0 = \bigcup_n \mathcal{C}_n$, then $\mathcal{C}_0 \subseteq \mathcal{C}$, and \mathcal{C}_0 is countable. Furthermore, $\sigma(E; \mathcal{C}_n) \subseteq \sigma(E; \mathcal{C}_0)$, and hence $A_n \in \sigma(E; \mathcal{C}_0)$ for each nwhich implies that $\bigcup_n A_n \in \sigma(E; \mathcal{C}_0)$. Therefore, $\bigcup_n A_n \in \mathcal{D}$ and \mathcal{D} is a σ -algebra.

Proof (b): By definition $\mathcal{D} \subseteq \sigma(E; \mathcal{C})$. Also, $\mathcal{C} \subseteq \mathcal{D}$ since $C \in \sigma(E; \{C\})$ for every $C \in \mathcal{C}$. Since $\sigma(E; \mathcal{C})$ is the smallest σ -algebra over E containg \mathcal{C} , then by part (a) $\sigma(E; \mathcal{C}) \subseteq \mathcal{D}$. Thus, $\mathcal{D} = \sigma(E; \mathcal{C})$.

3. A collection \mathcal{M} of sets is said to be a *monotone class* if it satisfies the following two properties:

(i) if $\{A_n\} \subseteq \mathcal{M}$ with $A_1 \subseteq A_2 \subseteq \ldots$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{M}$, and

- (ii) if $\{B_n\} \subseteq \mathcal{M}$ with $B_1 \supseteq B_2 \supseteq \ldots$, then $\bigcap_{n=1}^{\infty} B_n \in \mathcal{M}$.
- (a) Show that the intersection of an arbitrary collection of monotone classes is a monotone class.
- (b) Let E be a set, and \mathcal{B} a collection of subsets of E. Show that \mathcal{B} is a σ -algebra if and only if \mathcal{B} is an algebra and a monotone class.

- (c) Let \mathcal{A} be an algebra over E, and \mathcal{M} the smallest monotone class containing \mathcal{A} , i.e. \mathcal{M} is the intersection of all monotone classes containing \mathcal{A} . Show that \mathcal{M} is an algebra.
- (d) Using the same notation as in part (c), show that $\mathcal{M} = \sigma(E, \mathcal{A})$, where $\sigma(E, \mathcal{A})$ is the smallest σ -algebra over E containing the algebra \mathcal{A} .

Proof(a) EASY!

Proof(b) It is clear that any σ -algebra is both an algebra and a monotone class. Suppose that \mathcal{B} is an algebra and a monotone class. We only need to show that \mathcal{B} is closed under countable unions. Let A_1, A_2, \ldots , be a sequence in \mathcal{B} . Set $B_n = \bigcup_{m=1}^n A_n$, then $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$, and $B_1 \subseteq B_2 \subseteq \ldots$. Since \mathcal{B} is an algebra, then $B_n \in \mathcal{B}$, and since \mathcal{B} is a monotone class, then $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n \in \mathcal{B}$.

Proof(c) We first show that $\mathcal{M}_1 = \{B \subseteq E : B^c, B \cup A \in \mathcal{M} \text{ for all } A \in \mathcal{A}\}$ is a monotone class containing \mathcal{A} . Clearly, $\mathcal{A} \subseteq \mathcal{M}_1$. Now let $\{B_n\} \in \mathcal{M}_1$ with $B_1 \subseteq B_2 \subseteq, \ldots$. Then,

- $-B_n^c, B_n \cup A \in \mathcal{M} \text{ for all } n \geq 1 \text{ and } A \in \mathcal{A},$
- $-B_1^c \supseteq B_2^c \supseteq \dots$
- $-B_1 \cup A \subseteq B_2 \cup A \subseteq \dots$ for all $A \in \mathcal{A}$.

Since \mathcal{M} is a monotone class, then $(\bigcup_{n=1}^{\infty} B_n)^c = \bigcap_{n=1}^{\infty} B_n^c \in \mathcal{M}$. Further, for all $A \in \mathcal{A}$, one has $(\bigcup_{n=1}^{\infty} B_n) \cup A = \bigcup_{n=1}^{\infty} (B_n \cup A) \in \mathcal{M}$. Thus, $\bigcup_{n=1}^{\infty} B_n \in \mathcal{M}$, and \mathcal{M}_1 . Similarly one can show that if $C_1 \supseteq C_2 \supseteq \ldots$ is a sequence in \mathcal{M} , then $\bigcap_{n=1}^{\infty} C_n \in \mathcal{M}$. Thus, \mathcal{M}_1 is a monotone class containing \mathcal{A} . Since \mathcal{M} is the smallest monotone class containing \mathcal{A} , it follows that $\mathcal{M} \subseteq \mathcal{M}_1$.

Using a similar proof as above, one can show that $\mathcal{M}_2 = \{B \subseteq E : B^c, B \cup A \in \mathcal{M} \text{ for all } A \in \mathcal{M}\}$ is a monotone class over E. Since $\mathcal{M} \subseteq \mathcal{M}_1$, then for each $A \in \mathcal{A}$ one has $A \cup B \in \mathcal{M}$ for all $B \in \mathcal{M}$. This shows that $\mathcal{A} \subseteq \mathcal{M}_2$. Since \mathcal{M} is the smallest monotone class containing \mathcal{A} , it follows that $\mathcal{M} \subseteq \mathcal{M}_2$, and hence \mathcal{M} contains \emptyset , is closed under finite unions and complements. Therefore, \mathcal{M} is an algebra.

Proof(d) Parts (b) and (c) imply that \mathcal{M} is a σ -algebra containg \mathcal{A} , hence $\sigma(E, \mathcal{A}) \subseteq \mathcal{M}$ (since $\sigma(E, \mathcal{A})$ is the smallest σ -algebra containing \mathcal{A}). On the other hand, $\sigma(E, \mathcal{A})$ is a monotone class containing \mathcal{A} (by part (b)), hence $\mathcal{M} \subseteq \sigma(E, \mathcal{A})$ (since \mathcal{M} is the smallest monotone class containing \mathcal{A}). Therefore, $\mathcal{M} = \sigma(E, \mathcal{A})$.