Measure and Integration Solutions 7

1. Suppose E is a set, \mathcal{C} a π-system over E and $\mathcal{B}=\sigma(E ; \mathcal{C})$ (the smallest σ-algebra over E containing \mathcal{C}). Let μ and ν be two measures on (E, \mathcal{B}) such that (i) $\mu(E)=$ $\nu(E)<\infty$, and (ii) $\mu(C)=\nu(C)$ for all $C \in \mathcal{C}$. Let $\mathcal{H}=\{A \in \mathcal{B}: \mu(A)=\nu(A)\}$.
(a) Show that \mathcal{H} is a λ-system over E.
(b) Show that $\mathcal{B}=\mathcal{H}$, and conclude that $\mu(A)=\nu(A)$ for all $A \in \mathcal{B}$.

Proof(a) We need to verify properties (a)-(d) on page 34 .

- It is clear that $E \in \mathcal{H}$.
- If $A_{1}, A_{2} \in \mathcal{H}$ with $A_{1} \cap A_{2}=\emptyset$, then $\mu\left(A_{1} \cup A_{2}\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)=\nu\left(A_{1}\right)+$ $\nu\left(A_{2}\right)=\nu\left(A_{1} \cup A_{2}\right)$. Thus, $A_{1} \cup A_{2} \in \mathcal{H}$.
- Let $A_{1}, A_{2} \in \mathcal{H}$ with $A_{1} \subseteq A_{2}$. Since $\mu\left(A_{1}\right)=\nu\left(A_{1}\right)<\infty$, then

$$
\mu\left(A_{2} \backslash A_{1}\right)=\mu\left(A_{2}\right)-\mu\left(A_{1}\right)=\nu\left(A_{2}\right)-\nu\left(A_{1}\right)=\nu\left(A_{2} \backslash A_{1}\right) .
$$

therefore, $A_{2} \backslash A_{1} \in \mathcal{H}$.

- If $A_{1} \subseteq A_{2} \subseteq \ldots \in \mathcal{H}$, then by Theorem 3.1.6 it follows that

$$
\mu\left(\cup_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\lim _{n \rightarrow \infty} \nu\left(A_{n}\right)=\nu\left(\cup_{n=1}^{\infty} A_{n}\right) .
$$

Thus, $\cup_{n=1}^{\infty} A_{n} \in \mathcal{H}$, and therefore \mathcal{H} is a λ-system over E.
$\operatorname{Proof}(\mathbf{b})$ Notice that $\mathcal{C} \subseteq \mathcal{H} \subseteq \mathcal{B}$, and \mathcal{C} is a π-system. By Lemma 3.1.3, $\mathcal{B}=$ $\sigma(E ; \mathcal{C})$ is the smallest λ-system containg \mathcal{C}, hence $\mathcal{B} \subseteq \mathcal{H}$. This implies that $\mathcal{B}=\mathcal{H}$, therefore $\mu(A)=\nu(A)$ for all $A \in \mathcal{B}$.
2. Let (E, \mathcal{B}, μ) be a measure space, and $\overline{\mathcal{B}}^{\mu}$ be the completion of the σ-algebra \mathcal{B} with respect to the measure μ. We denote by $\bar{\mu}$ the extension of the measure μ to the σ-algebra $\overline{\mathcal{B}}^{\mu}$. Suppose $f: E \rightarrow E$ is a function such that $f^{-1}(B) \in \mathcal{B}$ and $\mu\left(f^{-1}(B)\right)=\mu(B)$ for each $B \in \mathcal{B}$, where $f^{-1}(B)=\{x \in E: f(x) \in B\}$. Show that $f^{-1}(\Gamma) \in \overline{\mathcal{B}}^{\mu}$ and $\bar{\mu}\left(f^{-1}(\Gamma)\right)=\bar{\mu}(\Gamma)$ for all $\Gamma \in \overline{\mathcal{B}}^{\mu}$.

Proof: Let $\Gamma \in \overline{\mathcal{B}}^{\mu}$, then there exist $A, B \in \mathcal{B}$ such that $A \subseteq \Gamma \subseteq B, \mu(B \backslash A)=0$ and $\bar{\mu}(\Gamma)=\mu(A)$. Then, $f^{-1}(A), f^{-1}(B) \in \mathcal{B}$ satisfy $f^{-1}(A) \subseteq f^{-1}(\Gamma) \subseteq f^{-1}(B)$ and $\mu\left(f^{-1}(B) \backslash f^{-1}(A)\right)=\mu\left(f^{-1}(B \backslash A)\right)=\mu(B \backslash A)=0$. Thus, $f^{-1}(\Gamma) \in \overline{\mathcal{B}}^{\mu}$ and $\bar{\mu}\left(f^{-1}(\Gamma)\right)=\mu\left(f^{-1}(A)=\mu(A)=\bar{\mu}(\Gamma)\right.$.
3. Let (E, \mathcal{B}, μ) be a measure space, and $\left\{A_{n}\right\}$ a sequence in \mathcal{B}. Define

$$
\limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}
$$

and

$$
\liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_{m}
$$

(a) Prove that $\mu\left(\liminf _{n \rightarrow \infty} A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
(b) Suppose that $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)<\infty$. Prove that $\mu\left(\lim \sup _{n \rightarrow \infty} A_{n}\right) \geq \lim \sup _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
(c) Prove that if $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty$, then $\mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0$. (This is known as the Borel-Cantelli Lemma).

Proof (a): Let $B_{n}=\bigcap_{m=n}^{\infty} A_{n}$, then $B_{1} \subseteq B_{2} \subseteq \ldots$ are measurable and $\liminf _{n \rightarrow \infty} A_{n}=$ $\bigcup_{n=1}^{\infty} B_{n}$. Thus,

$$
\mu\left(\liminf _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=\liminf _{n \rightarrow \infty} \mu\left(B_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(A_{n}\right) .
$$

Proof (b): Let $C_{n}=\bigcup_{m=n}^{\infty} A_{n}$, then $C_{1} \supseteq C_{2} \supseteq \ldots$ are measurable and lim $\sup _{n \rightarrow \infty} A_{n}=$ $\bigcap_{n=1}^{\infty} C_{n}$. Since $\mu\left(C_{1}\right)=\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)<\infty$, then

$$
\mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(C_{n}\right)=\limsup _{n \rightarrow \infty} \mu\left(C_{n}\right) \geq \limsup _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Proof (c): Notice that since $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty$, then $\lim _{n \rightarrow \infty} \sum_{m=n}^{\infty} \mu\left(A_{m}\right)=0$. Thus,

$$
\mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{m=n}^{\infty} A_{n}\right) \leq \lim _{n \rightarrow \infty} \sum_{m=n}^{\infty} \mu\left(A_{m}\right)=0
$$

4. Let $\mathcal{C}=\{(a, \infty): a \in \mathbb{R}\}$, and let $\mathcal{B}_{\mathbb{R}}$ be the Borel σ-algebra over \mathbb{R}.
(a) Show that $\mathcal{B}_{\mathbb{R}}=\sigma(E ; \mathcal{C})$.
(b) Let (E, \mathcal{F}, μ) be a finite measure space. Suppose $f: E \rightarrow \mathbb{R}$ satisfies $f^{-1}(A) \in$ \mathcal{F} for all $A \in \mathcal{B}_{\mathbb{R}}$, where $\mathcal{B}_{\mathbb{R}}$ is the Borel σ-algebra over \mathbb{R}. Define μ_{f} on $\mathcal{B}_{\mathbb{R}}$ by $\mu_{f}(A)=\mu\left(f^{-1}(A)\right)$ for all $A \in \mathcal{B}_{\mathbb{R}}$. Show that μ_{f} is a measure on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$.

Proof (a): Notice that $\sigma(E ; \mathcal{C}) \subseteq \mathcal{B}_{\mathbb{R}}$ since each element of \mathcal{C} is open. We now show that $\sigma(E ; \mathcal{C})$ contains all the open intervals. For any $a \in \mathbb{R}$,

$$
[a, \infty)=\bigcap_{n=1}^{\infty}\left(a-\frac{1}{n}, \infty\right) \in \sigma(E ; \mathcal{C})
$$

Thus, for any $a \leq b \in \mathbb{R}$,

$$
(a, b)=(a, \infty) \backslash[b, \infty) \in \sigma(E ; \mathcal{C})
$$

Now, by Lemma 2.1.9, any open set G in \mathbb{R} is a countable disjoint union of open intervals, hence $G \in \sigma(E ; \mathcal{C})$. Since, $\mathcal{B}_{\mathbb{R}}$ is the smallest σ-algebra over \mathbb{R} containing the open sets, it follows that $\mathcal{B}_{\mathbb{R}} \subseteq \sigma(E ; \mathcal{C})$. Therefore, $\mathcal{B}_{\mathbb{R}}=\sigma(E ; \mathcal{C})$.

Proof (b): Notice that $\mu_{f}(\emptyset)=0$, and if $A_{1}, A_{2}, \cdots \in \mathcal{B}_{\mathbb{R}}$ are pairwise disjoint, then $f^{-1}\left(A_{1}\right), f^{-1} A_{2}, \cdots \in \mathcal{F}$ are pairwise disjoint, and $f^{-1}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\bigcup_{n=1}^{\infty} f^{-1} A_{n}$. Hence,

$$
\mu_{f}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} f^{-1} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(f^{-1} A_{n}\right)=\sum_{n=1}^{\infty} \mu_{f}\left(A_{n}\right) .
$$

So μ_{f} is countably additive and μ_{f} is a measure on $\mathcal{B}_{\mathbb{R}}$.

