Universiteit Utrecht

Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Measure and Integration Solutions 8

- 1. Let $\mathcal{C} = \{(a, \infty) : a \in \mathbb{R}\}$, and let $\mathcal{B}_{\mathbb{R}}$ be the Borel σ -algebra over \mathbb{R} .
 - (a) Let (E, \mathcal{B}) be a measurable space. Suppose $f : E \to \mathbb{R}$ satisfies $f^{-1}(C) \in \mathcal{B}$ for all $C \in \mathcal{C}$. Show that f is measurable, i.e. $f^{-1}(A) \in \mathcal{B}$ for all $A \in \mathcal{B}_{\mathbb{R}}$.
 - (b) Suppose ν and μ are finite measures on $\mathcal{B}_{\mathbb{R}}$, and $\mu(f^{-1}(a,\infty)) = \nu((a,\infty))$ for all $a \in \mathbb{R}$. Show that $\mu(f^{-1}(A)) = \nu(A)$ for all $A \in \mathcal{B}_{\mathbb{R}}$.

Proof (a): Since $\mathcal{B}_{\mathbb{R}} = \sigma(\mathbb{R}, \mathcal{C})$, the result follows from Lemma 3.2.1.

Proof (b): Notice that C is a π -system generating the Borel σ -algebra, and μ and ν are finite measures agreeing on members of C, thus the result follows from problem 1 exercises 7.

2. Let (E, \mathcal{B}, μ) be a measure space, and $f_n : E \to [-\infty, \infty]$ a sequence of measurable functions. Show that $\sup_n f_n$ and $\inf_n f_n$ are measurable.

Proof: Let $\overline{\mathbb{R}} = [-\infty, \infty]$. Notice that if $\mathcal{C}_1 = \{[a, \infty] : a \in \overline{\mathbb{R}}\}$ and $\mathcal{C}_2 = \{[-\infty, a] : a \in \overline{\mathbb{R}}\}$, then $\mathcal{B}_{\overline{\mathbb{R}}} = \sigma(\overline{\mathbb{R}}; \mathcal{C}_i)$ for i = 1, 2. Hence it suffices to show that $\{\sup_n f_n \leq a\}, \{\inf_n f_n \geq a\} \in \mathcal{B}$ for all $a \in \overline{\mathbb{R}}$. Now,

$$\{\sup_{n} f_n \le a\} = \bigcap_{n} \{f_n \le a\} \in \mathcal{B}$$

and

$$\{\inf_{n} f_{n} \ge a\} = \bigcap_{n} \{f_{n} \ge a\} \in \mathcal{B}.$$

3. Let (E, \mathcal{B}, μ) be a measure space. Suppose $f : E \to [-\infty, \infty]$ is a function such that $f = \sum_{i=1}^{n} a_i 1_{A_i}$, where a_1, \dots, a_n are **distinct** elements of $[-\infty, \infty]$ and A_1, A_2, \dots, A_n are disjoint subsets of E. Show that f is measurable (i.e. $f^{-1}(A) \in \mathcal{B}$ for all $A \in \mathcal{B}_{[-\infty,\infty]}$) if and only if $A_1, A_2, \dots, A_n \in \mathcal{B}$.

Proof: Suppose that f is measurable. Notice that $\{a_i\}$ is closed in $[-\infty, \infty]$, hence $\{a_i\} \in \mathcal{B}_{[-\infty,\infty]}$ for all $i = 1, 2, \dots, n$. Since f is measurable and A_1, A_2, \dots, A_n are disjoint, then $A_i = f^{-1}(\{a_i\}) \in \mathcal{B}$.

Conversely, suppose $A_1, A_2, \dots, A_n \in \mathcal{B}$, then $1_{A_1}, 1_{A_2}, \dots 1_{A_n}$ are measurable functions. Hence, $f = \sum_{i=1}^n a_i 1_{A_i}$ is measurable.

4. Let (E, \mathcal{B}, μ) be a measure space, and $f : E \to [0, \infty]$ a measurable simple function such that $\int_E f d\mu < \infty$. Define $\lambda : \mathcal{B} \to [0, \infty]$ by

$$\lambda(B) = \int_B f \, d\mu.$$

- (a) Show that λ is a **finite** measure on \mathcal{B} .
- (b) Suppose that $\mu(f=0) = 0$. Show that $\lambda(B) = 0$ if and only if $\mu(B) = 0$.

Proof (a): Since $\int_E f d\mu < \infty$, then $\mu(f = \infty) = 0$. Let a_1, a_2, \dots, a_m be the nonzero distinct finite values of f, then $\int_E f d\mu = \sum_{i=1}^m a_i \mu(A_i)$, where $A_i = \{f = a_i\}$. For any $B \in \mathcal{B}$ one has

$$\lambda(B) = \int_E f \cdot 1_B \, d\mu = \sum_{i=1}^m a_i \mu(A_i \cap B).$$

From this, one easily sees that $\lambda(\emptyset) = 0$. Now, suppose $B_1, B_2, \dots, \in \mathcal{B}$ are pairwise disjoint and let $B = \bigcup_{n=1}^{\infty} B_n$. Then $1_B = \sum_{n=1}^{\infty} 1_{B_n}$, and

$$\lambda(B) = \sum_{i=1}^{m} a_i \mu(A_i \cap B) = \sum_{i=1}^{m} a_i \sum_{n=1}^{\infty} \mu(A_i \cap B_n) = \sum_{n=1}^{\infty} \sum_{i=1}^{m} a_i \mu(A_i \cap B_n) = \sum_{n=1}^{\infty} \lambda(B_n).$$

Thus, λ is σ -additive. Since $\lambda(E) = \int_E f d\mu < \infty$, it follows that λ is a finite measure on \mathcal{B} .

Proof (b): We use the same notation as in the proof of part (a). Suppose $\mu(B) = 0$, then $\mu(A_i \cap B) = 0$ for all $i = 1, 2, \dots, m$. Hence, $\lambda(B) = \sum_{i=1}^{m} a_i \mu(A_i \cap B) = 0$. Now, assume that $\lambda(B) = 0$. Since $a_1, a_2, \dots, a_m > 0$ and $\sum_{i=1}^{m} a_i \mu(A_i \cap B) = 0$, it follows that $\mu(A_i \cap B) = 0$ for all $i = 1, 2, \dots, m$. Further, since $\mu(f = \infty) = \mu(f = 0) = 0$, then $\mu(E \setminus \bigcup_{i=1}^{m} A_i) = 0$. Thus, $\mu(B) = \mu(\bigcup_{i=1}^{m} A_i \cap B) = \sum_{i=1}^{m} \mu(A_i \cap B) = 0$.