Measure and Integration Solutions 8

1. Let $\mathcal{C}=\{(a, \infty): a \in \mathbb{R}\}$, and let $\mathcal{B}_{\mathbb{R}}$ be the Borel σ-algebra over \mathbb{R}.
(a) Let (E, \mathcal{B}) be a measurable space. Suppose $f: E \rightarrow \mathbb{R}$ satisfies $f^{-1}(C) \in \mathcal{B}$ for all $C \in \mathcal{C}$. Show that f is measurable, i.e. $f^{-1}(A) \in \mathcal{B}$ for all $A \in \mathcal{B}_{\mathbb{R}}$.
(b) Suppose ν and μ are finite measures on $\mathcal{B}_{\mathbb{R}}$, and $\mu\left(f^{-1}(a, \infty)\right)=\nu((a, \infty))$ for all $a \in \mathbb{R}$. Show that $\mu\left(f^{-1}(A)\right)=\nu(A)$ for all $A \in \mathcal{B}_{\mathbb{R}}$.

Proof (a): Since $\mathcal{B}_{\mathbb{R}}=\sigma(\mathbb{R}, \mathcal{C})$, the result follows from Lemma 3.2.1.
Proof (b): Notice that \mathcal{C} is a π-system generating the Borel σ-algebra, and μ and ν are finite measures agreeing on members of \mathcal{C}, thus the result follows from problem 1 exercises 7 .
2. Let (E, \mathcal{B}, μ) be a measure space, and $f_{n}: E \rightarrow[-\infty, \infty]$ a sequence of measurable functions. Show that $\sup _{n} f_{n}$ and $\inf _{n} f_{n}$ are measurable.

Proof: Let $\overline{\mathbb{R}}=[-\infty, \infty]$. Notice that if $\mathcal{C}_{1}=\{[a, \infty]: a \in \overline{\mathbb{R}}\}$ and $\mathcal{C}_{2}=\{[-\infty, a]:$ $a \in \overline{\mathbb{R}}\}$, then $\mathcal{B}_{\overline{\mathbb{R}}}=\sigma\left(\overline{\mathbb{R}} ; \mathcal{C}_{i}\right)$ for $i=1,2$. Hence it suffices to show that $\left\{\sup _{n} f_{n} \leq\right.$ $a\},\left\{\inf _{n} f_{n} \geq a\right\} \in \mathcal{B}$ for all $a \in \overline{\mathbb{R}}$. Now,

$$
\left\{\sup _{n} f_{n} \leq a\right\}=\bigcap_{n}\left\{f_{n} \leq a\right\} \in \mathcal{B}
$$

and

$$
\left.\underset{n}{\left\{\inf _{n}\right.} f_{n} \geq a\right\}=\bigcap_{n}\left\{f_{n} \geq a\right\} \in \mathcal{B}
$$

3. Let (E, \mathcal{B}, μ) be a measure space. Suppose $f: E \rightarrow[-\infty, \infty]$ is a function such that $f=\sum_{i=1}^{n} a_{i} 1_{A_{i}}$, where a_{1}, \cdots, a_{n} are distinct elements of $[-\infty, \infty]$ and $A_{1}, A_{2}, \cdots, A_{n}$ are disjoint subsets of E. Show that f is measurable (i.e. $f^{-1}(A) \in \mathcal{B}$ for all $\left.A \in \mathcal{B}_{[-\infty, \infty]}\right)$ if and only if $A_{1}, A_{2}, \cdots, A_{n} \in \mathcal{B}$.

Proof: Suppose that f is measurable. Notice that $\left\{a_{i}\right\}$ is closed in $[-\infty, \infty]$, hence $\left\{a_{i}\right\} \in \mathcal{B}_{[-\infty, \infty]}$ for all $i=1,2, \cdots, n$. Since f is measurable and $A_{1}, A_{2}, \cdots, A_{n}$ are disjoint, then $A_{i}=f^{-1}\left(\left\{a_{i}\right\}\right) \in \mathcal{B}$.
Conversely, suppose $A_{1}, A_{2}, \cdots, A_{n} \in \mathcal{B}$, then $1_{A_{1}}, 1_{A_{2}}, \cdots 1_{A_{n}}$ are measurable functions. Hence, $f=\sum_{i=1}^{n} a_{i} 1_{A_{i}}$ is measurable.
4. Let (E, \mathcal{B}, μ) be a measure space, and $f: E \rightarrow[0, \infty]$ a measurable simple function such that $\int_{E} f d \mu<\infty$. Define $\lambda: \mathcal{B} \rightarrow[0, \infty]$ by

$$
\lambda(B)=\int_{B} f d \mu
$$

(a) Show that λ is a finite measure on \mathcal{B}.
(b) Suppose that $\mu(f=0)=0$. Show that $\lambda(B)=0$ if and only if $\mu(B)=0$.

Proof (a): Since $\int_{E} f d \mu<\infty$, then $\mu(f=\infty)=0$. Let $a_{1}, a_{2}, \cdots, a_{m}$ be the nonzero distinct finite values of f, then $\int_{E} f d \mu=\sum_{i=1}^{m} a_{i} \mu\left(A_{i}\right)$, where $A_{i}=\left\{f=a_{i}\right\}$. For any $B \in \mathcal{B}$ one has

$$
\lambda(B)=\int_{E} f \cdot 1_{B} d \mu=\sum_{i=1}^{m} a_{i} \mu\left(A_{i} \cap B\right) .
$$

From this, one easily sees that $\lambda(\emptyset)=0$. Now, suppose $B_{1}, B_{2}, \cdots, \in \mathcal{B}$ are pairwise disjoint and let $B=\bigcup_{n=1}^{\infty} B_{n}$. Then $1_{B}=\sum_{n=1}^{\infty} 1_{B_{n}}$, and
$\lambda(B)=\sum_{i=1}^{m} a_{i} \mu\left(A_{i} \cap B\right)=\sum_{i=1}^{m} a_{i} \sum_{n=1}^{\infty} \mu\left(A_{i} \cap B_{n}\right)=\sum_{n=1}^{\infty} \sum_{i=1}^{m} a_{i} \mu\left(A_{i} \cap B_{n}\right)=\sum_{n=1}^{\infty} \lambda\left(B_{n}\right)$.
Thus, λ is σ-additive. Since $\lambda(E)=\int_{E} f d \mu<\infty$, it follows that λ is a finite measure on \mathcal{B}.

Proof (b): We use the same notation as in the proof of part (a). Suppose $\mu(B)=0$, then $\mu\left(A_{i} \cap B\right)=0$ for all $i=1,2, \cdots, m$. Hence, $\lambda(B)=\sum_{i=1}^{m} a_{i} \mu\left(A_{i} \cap B\right)=0$. Now, assume that $\lambda(B)=0$. Since $a_{1}, a_{2}, \cdots a_{m}>0$ and $\sum_{i=1}^{m} a_{i} \mu\left(A_{i} \cap B\right)=0$, it follows that $\mu\left(A_{i} \cap B\right)=0$ for all $i=1,2, \cdots, m$. Further, since $\mu(f=\infty)=\mu(f=0)=0$, then $\mu\left(E \backslash \bigcup_{i=1}^{m} A_{i}\right)=0$. Thus, $\mu(B)=\mu\left(\bigcup_{i=1}^{m} A_{i} \cap B\right)=\sum_{i=1}^{m} \mu\left(A_{i} \cap B\right)=0$.

