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1. Introduction

Magnetic nanoparticles have many applications that are the
subject of current research. For example, in cancer therapy local
hyperthermia can be generated by heating magnetic nanoparticles
linked to cancer cells by applying an alternating magnetic field
[1,2]. Another promising biomedical technique is magnetic particle
imaging (MPI) [3], which also exploits the response of magnetic
nanoparticles to alternating fields. Both of these biomedical
applications ideally require magnetic particles that all have exactly
the same (size dependent) magnetic resonance frequency [4,5], to
obtain a maximum response at that frequency. For these and other
applications, it is important to know how the magnetic properties
are distributed across the entire population of nanoparticles.
A widely adopted approach to determine the distribution of the
dipole moments is by analysis of the magnetization of the sample
as a function of external magnetic field strength.

The magnetization curves of ferrofluids are often fitted on the
basis of an assumed shape of the distribution of the magnetic
dipole moments, related more or less directly to the size distribu-
tion from transmission electron microscopy (TEM). Chantrell et al.
[6] assumed a log-normal distribution, but other distributions
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such as a gamma function have been adopted as well [7,8]. The
parameters of the log-normal distribution can either be derived
from the low- and high-field limits of the magnetization curve
[6,7] or from fitting the complete curve [9,10]. More specific
models have also been proposed, like a core-shell model [11] to
explain the discrepancy between magnetic diameter and physical
diameter from TEM. For multimodal systems, the distribution can
in principle be modeled with multiple peaks; one then faces the
difficulty that an increasing number of fit parameters can make
the results less reliable and physically less meaningful.

For dynamic light scattering as a colloidal characterization tech-
nique (DLS), there is a long tradition of obtaining particle size
distributions without assuming the distribution shape but by apply-
ing discrete inversion methods [12]. Similar methods have also been
used to derive magnetic particle size or dipole moment distributions
from magnetization measurements [13-17]. An analysis technique
that does not assume any shape of the particle distribution generally
yields a better fit of the experimental magnetization curve.

Nowadays, many different inversion methods are available, such
as genetic algorithms [13], maximum entropy [18], singular value
decomposition (SVD) [19], simulated annealing [13], moment expan-
sion [20], and non-negative least squares methods. The latter can be
subdivided into a class of regularized methods, such as the CONTIN
method [12,21,22], prominent in dynamic light scattering [12], and
non-regularized methods [23]. The reconstruction of the magnetic
size distribution by these techniques is not trivial and not necessarily
robust. For example, the SVD method is highly sensitive to noise [6].
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For a good reconstruction based on the moments of the distribution,
typically 10 moments are necessary to arrive at a reasonable
approximation of the dipole moment distribution. Although these
moments could be obtained via a fit of the magnetization curve with
a Taylor expansion of the Langevin function, the number of terms
required to describe a reasonable part of the data is large and
therefore the reliability of the thus obtained moments is low. And
although genetic algorithms can provide reliable distributions, these
methods typically have a high computational cost.

In this paper, we apply a model-independent, non-regularized
inversion method for the analysis of magnetization curves. It is
adapted from a method designed by Strawbridge and Hallett [23] for
the analysis of static light scattering measurements (SLS). This
method does not assume unimodality nor other prior knowledge
of the shape of the distribution of particle sizes or magnetic dipole
moments. Using non-negative least squares procedures (NNLS), our
method enforces positive number densities, unlike other methods
that can give negative, unphysical results [15]. Our procedure is
applicable to measurement data from alternating gradient magneto-
metry (AGM) as well as vibrating sample magnetometry (VSM).

In principle, our program is based on discrete sampling
methods, originally developed by Pike et al. [24] as an exponential
sampling technique, and later improved by Morrison et al. [25].
With the NNLS procedure based on Lawson and Hanson [26], a
short execution time is obtained on the order of seconds or less
using a state-of-the-art personal computer.

In the next section, the mathematical foundation of our model-
independent method is presented. In the Results and Discussion
section, the method is first demonstrated on real measurement
data of ferrofluid samples with a known multimodal size distribu-
tion. This is followed by the analysis of simulated magnetization
curves calculated for test distributions of the dipole moment.
Gaussian noise is added to the simulated measurements to test the
robustness of the inversion method.

2. Numerical methods

For a dilute dispersion of monodisperse non-interacting sphe-
rical magnetic nanoparticle dipoles, the total magnetic dipole
moment M of the sample as a function of the applied magnetic
field H is described by the Langevin function L, with

M(H) = M (H. )= Mo (cothir — ) = (el S
o kBT

where My is the magnetic moment of the sample under magnetic
saturation conditions, u is the magnetic dipole moment of a
magnetic nanoparticle, y, is the permeability of vacuum, kg is
the Boltzmann constant, and T is the absolute temperature. In case
of a monodisperse ferrofluid with a number n of particles, Msq
corresponds to the magnetic moment My, = nu when all magnetic
dipoles are aligned in the limit of infinite applied field H. For a
polydisperse or a multimodal colloidal dispersion, the sample
magnetic moment is the sum of all contributing dipole moments,
which for a continuous joint probability distribution function can
be written as a distribution integral:

MiH) = [ a0 du @

Here, the factor P(u) du gives the number of particles with dipole
moments between y and y-+du and, similarly, #P(u) du gives the
contribution to the magnetic moment of the sample under
saturation conditions.

In order to obtain the magnetic dipole moment distribution
P(u), we must solve Eq. (2) given the experimental magnetization
curve Meypy and using the Langevin function L(H, y) from Eq. (1).
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Fig. 1. Histogram showing an example of a dipole moment distribution with the
dipole moments y (or alternatively the particle radius R) binned in N=15
geometrically spaced bins, subdivided into S=5 subdomains. The meaning of the
y-axis values depends on the definition of the probability factor P(x) in the
magnetization function (Eq. (2)).

This is in general an ill-conditioned problem; small experimental
uncertainties such as noise can give rise to large, unphysical peaks
in the distribution curve [12].

To address this problem, we rewrite Eq. (2) in a discrete form.
The magnetic dipole moment domain is subdivided into a histo-
gram of N intervals of which each bin spacing A; has a center
dipole moment y; and a bin content equal to the number
amplitude n; (see Fig. 1). The experimental magnetization curve
consists of J points M; each measured at a field strength H;. The
discrete form of Eq. (2) becomes

N
Mexp(Hj) = 'E] i L(H;, ppn; 3

The basis vector H; contains the experimental values of the
magnetic field strength at which the measurements are made. The
measurement output can be written as a column vector Mey
having the same length J. We describe the magnetic dipole
moment distribution by a column vector n,s of length N, with
elements n; in a basis ;. Eq. (3) can now be summarized using a

Jx N data transfer matrix T that contains matrix elements
T; equal to p;L(Hj,u;) calculated using the Langevin function

(see Eq. (1)):
Mexp = :i: - Mpgq (4)

In the absence of experimental uncertainties, the number
distribution np can be solved from Eq. (4). Due to noise and
other measurement uncertainties, statistical methods are needed
to obtain the best magnetic dipole moment distribution n; by
minimizing the mean squares deviation 52:

£ = Mo — T - ]2 5)

The result of this inversion method is obtained without assuming
prior knowledge of the form of the distribution (e.g., log-normal or
Gaussian).

Regularization methods are often used in order to make the
problem less ill-conditioned. In dynamic light scattering, the
CONTIN method [12,21,22], based on the algorithm of Tikhonov
[27,28], is a well-known example. A mathematical regularizing
term is added to Eq. (5) to force a smooth outcome of the
probability distribution n;. The regularizer is the square norm of
the first or a higher order derivative of the distribution function n;
itself, multiplied by a regularization strength parameter 4 which
determines the influence of this regularization term. The result is a
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mean squared deviation 52 that is low when a smooth distribution
is obtained because then the derivatives of this function are small.
We prefer not to smoothen the outcome in this way. We opt for
another type of inversion method, without regularization, as
applied by Strawbridge and Hallett [23] to the analysis of static
light scattering measurements. We adopt this method here to treat
data of magnetization measurements.

The range of allowed magnetic dipole moments is delimited by
a minimum g, and a maximum y,,,,. Alternatively, one could
select a size range r; and calculate the elements T;; of the data

transfer matrix T with the radius rather than the magnetic dipole
moment as the basis. The range is divided into N discrete parts
each represented by a center value y;. Although a linear spacing
would be possible, in this work the bins are spaced according to a
geometrical series:

Hi = Poninl B/ i)' N~ DT (6)

This distribution favors the narrow bins, at small dipole moments,
rather than the wider bins, at larger dipole moments. Each bin has
a similar weight in the inversion method, but the weight is
proportional to the bin width when contributing to the magneti-
zation curve. Our approach is recommended because the particles
contribute to the measured magnetization with a weight factor
proportional to their dipole moment and therefore the magnetiza-
tion curve is dominated by the larger particles.

The essence of the non-regularization method used here is to
split the range of N intervals into S subdomains, each with index s
and elements ns:

N5 = (U, fhs i g Hos s -Hik—1ysass )

k=1,...,¥; ,S; %elnteger 7
For each subdomain ng Eq. (4) is solved by minimizing the mean
squared deviation 52 using Eq. (5). The vector representing the
measured magnetic moment M.y, is unaltered, but an adapted
version of the data transfer matrix T, with dimension J x N/S is
used based on subdomain ng. Finally the subdomain distributions
are merged into the total probability distribution n,. The division
of the complete basis vector into S equivalent subsets has two
advantages [25]. First it reduces the number of dipole moments
taken into account for the minimization of Eq. (5) and thereby
renders the problem less ill-conditioned. Secondly, each of the
subsets gives an equally probable solution of the problem; there-
fore, small peaks that occur only in one or a few of the subsets can
be considered to originate from experimental noise.

To ensure that a solution is obtained that has physical meaning,
the constraint is used that each n; in Eq. (5) must be positive. For
this purpose a non-negative least mean squares method is used,
developed by Lawson and Hanson [26] and implemented in
Mathematica [29]. An additional benefit of the non-negative
constraint is that Eq. (4) is less ill-conditioned.

A large number N of different discrete magnetic dipole moment
values gives a high resolution in the magnetic dipole moment (or
size) but can give rise to noisy peaks in the probability distribu-
tion. With this solution one can reconstruct a precise magnetiza-
tion curve. This is the optimal choice for a monomodal system
with low polydispersity or a multimodal system with small ratios
of the magnetic dipole moment or size. With a small number N of
intervals, a smooth probability distribution is obtained, with the
disadvantage of peak broadening or failure to distinguish peaks in
case of a multimodal system. The latter is comparable to a high
regularization parameter A in regularization methods. The mean
squared deviation 52 is increased in case of a small number of
intervals, meaning a lower quality of the fit of the magnetization
curve. For a system with a broad distribution, a small number of

s=1,...

intervals can be acceptable. The number of subdomains S has an
optimum related to the number of intervals N. A too small or too
large number of subdomains do not eliminate the ill-condition of
the inversion problem.

The first bins of the histogram, representing small magnetic
dipole moments (or particle sizes) often contain noise. To arrive at
an objective cutoff value that discriminates between the noise and
the ‘real’ part of the signal, we utilize the fact that smaller
magnetic moments require a higher magnetic field H to reach
magnetic saturation of the sample. The available experimental
equipment determines the maximum magnetic field that can be
reached; this fixes the minimum magnetic moment that can be
measured (for details, see Supporting Information). Values below
this threshold are rejected for the evaluation of the quality of the
recovered test distribution in the simulations where a super-
paramagnetic magnetization curve is generated.

Our procedure is implemented in the computer program
MINORIM, made available for several platforms [30].

3. Experimental methods

The magnetic particles used to demonstrate the inversion
method are magnetite nanoparticles synthesized by single-step
thermal decomposition of iron oleate. The followed chemical
recipe is from the Hyeon group [31] and was described as the
“sphere synthesis” by Luigjes et al. [10]. Two batches of particles
were prepared containing magnetite particles with a diameter of
6.4+ 0.6 nm and 10.5 + 1.2 nm, respectively. The surface of the
particles was coated with oleic acid, and the particles were
dispersed in the solvent cis/trans-decalin (Merck, for synthesis).

Transmission electron microscopy on these samples was per-
formed using a FEI Tecnai 12 electron microscope operated at
120 keV. For each sample, the size distribution was obtained by
measuring the diameter of 200-300 particles with the iTEM
software package.

For the preparation of the magnetic samples, the saturation
magnetization of the two nanoparticle dispersions was measured
first. Two stock dispersions were then prepared with approxi-
mately equal magnetic moment per unit volume. Finally, from
these stock solutions, mixtures were prepared with well defined
amounts of large and small particles.

The magnetization curves were measured with alternating
gradient magnetometry (AGM) using a Princeton Micromag Model
2900. The absence of magnetic interactions between the particles
was verified by comparing the shape of the normalized magneti-
zation curve before and after dilution by a factor of 10. In the
absence of dipole-dipole interactions, both normalized curves
should be equal.

The first step in the analysis of the magnetization curves was
the correction for non-superparamagnetic behavior. The high-field
part of the curve is independent of the distribution of the dipole
moments and only depends on the average dipole moment; the
superparamagnetic component of the magnetization curve could
thus be separated from the linear diamagnetic component by
fitting it with a hyperbolic function. The magnetization curve now
corrected for linear contributions was used as input for the
inversion routine, which returns the experimental particle size
distribution npgqe.,. A detailed overview of the complete analysis
procedure is presented in the Supporting Information. For the
conversion from magnetic dipole moment to magnetic radius, we
assume that the magnetic objects are spherical particles with a volume
magnetization equal to the bulk magnetization of 480 kA/m [32].

Numerical simulations were performed to test the limits of our
inversion method. The basis vector for this simulated distribution
was chosen geometrically with approximately 10 times more
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points per decade than used in the inversion method, to mimic a
continuous distribution. The number distribution vector n was
filled with a mono- or bi-modal distribution for which the bin
content was log-normally distributed, with known average dipole
moment and standard deviation. This distribution was inserted in
Eq. (4), yielding the simulated magnetization curve, Mg;,, with a
base vector H containing the same values for the magnetic field
strength as the experimental data. Finally, Gaussian noise was
added to the magnetization curve with standard deviations from
0.001% to 1% of the saturation magnetization, typical for experi-
ments (see next section). This simulated magnetization curve was
used as input for the inversion routine to obtain the simulated size
distribution nyg gin.

4. Results and discussion

The applicability of our inversion method is tested both with
experimental data and numerical simulations. The first part of this
section presents the analysis of a mixture of small (6.4 nm) and
large (10.5 nm) nanoparticles mixed in different ratios. The second
part explores the practical limits of the inversion method using
numerically simulated data.

4.1. Experiments

Fig. 2 compares the number distribution of magnetic sizes
obtained with the inversion method and the particles sizes from
TEM. Both distributions contain two distinct peaks, corresponding
to the large and small particles mixed to obtain the magnetic
sample. For both peaks, the magnetic radius (Ry,) is smaller than
the physical particle size (Rp). This is a well-known effect [11] due
to the weaker magnetism of a near-surface layer of the nanopar-
ticles. In our case, the difference between the magnetic radius and
TEM radius is about 1 nm for both the small and large particles,
consistent with a surface effect.

The most common method to analyze the magnetization
curves of ferrofluids is a fit assuming a log-normal distribution.
Fig. 3 compares that fit method with our inversion method for the
same sample. The inversion method shows a residual that is
centered around zero, evidenced by the residuals and the histo-
gram of the deviations in the inset of Fig. 3A. The autocorrelation
of these residuals (data not shown) showed the absence of any
correlation, indicating that the residuals are randomly distributed
around zero; this confirms that the quality of the fit is good. The
log-normal distribution is not able to describe the system properly,
as is clearly visible by repetitive deviations from zero in the
residual (Fig. 3B). The noise level on this magnetization curve is
typical for experimental data; the histogram in Fig. 3A indicates
that the noise is Gaussian, with a standard deviation on the order
of 1% of the saturation magnetization.
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Fig. 2. Particle size distribution from magnetic measurements (AGM, line with
dots) and TEM (line without dots). The inset shows a schematic picture of a
magnetic nanoparticle with a magnetic core and a more weakly magnetized shell,
resulting in a discrepancy between the magnetic (Ry) and TEM (Rp) radii.
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Fig. 3. (A) Experimental magnetization curve fitted using a log-normal model (Log)
and the inversion method described in this work (Inv). (B) Residuals of the log-
normal fit, and (C) residuals of the inversion method. The inset in (A) shows the
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Information.
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Fig. 4. Dipole moment distributions averaged over 10 different measurements on
two duplicate samples containing small and large particles with a magnetization
ratio of 1.97. Both samples yield indistinguishable distributions with a ratio of the
peak areas of 1.96. The third sample had the same total volume but was diluted by a
factor of 10; this leads to a poor signal-to-noise ratio (AM /Mg, see inset) but still
to a similar distribution. In the Supporting Information, a normalized version of this
figure is shown to compare the different peak ratios.

To obtain statistics on the reliability of the results, we per-
formed 10 measurements on 3 different samples containing small
and large particles; two samples were duplicates and the third one
was diluted by a factor of 10. In Fig. 4, the averaged magnetic
particle size distributions are shown. The error bars indicate the
standard deviation for each bin. As expected, all curves show two
separate peaks, even the low concentration sample, for which the
standard deviation of the noise is 10% of the saturation magneti-
zation. The two samples with the same high concentrations yield
practically indistinguishable results, which confirms the reprodu-
cibility of the inversion method.
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An important criterion to judge the applicability of the inversion
method is whether the peaks in the resulting dipole moment
distribution have the expected physical meaning. We tested this
requirement by creating mixtures with different amounts of the two
monodisperse stock dispersions and by measuring the magnetization
curve. From the results of the analysis of the magnetization curves
with the inversion method, the volumetric fractions of small particles
were calculated; they are shown in Fig. 5 as a function of the weighed-
in volume fraction of small particles in the mixture. The solid line has a
slope of unity, indicating that the relative amounts of small and large
particles were determined correctly from the magnetic analysis.

4.2. Simulations

The main variables that influence the quality of the final fit are
noise (see Fig. 4), the range of sampling points of the magnetization
curve, and the number N of sampling dipole moments. In this
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Fig. 5. Ratio of the volume of small particles dispersion (V) to the total sample
volume (Vmai + Viarge) Obtained from the analysis of magnetic measurements with
the inversion method plotted as a function of the weighed-in volume ratio of the
two components in the sample. The solid line has a slope of unity.
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section, the influence of these parameters on the final result is
investigated using simulated magnetization curves. The agreement
between the simulated dipole moment distribution and that
obtained from the inversion method is quantified using the R? value,
defined as

RE_1_ . 2n (Meg (1) — Nsim(1))*

. ®)
Zﬂ (nExp(ﬂ) - <nExp (/’t»)

where n is the dipole moment distribution function from the
simulated (sim, sampled at y,,,) and analyzed (exp) dataset. The
summation runs over all values of u present in the fitted distribution.

The Langevin curve at low field strength and high field strength
only depends on, respectively, the average squared dipole moment
and the average dipole moment (see Supporting Information). We
therefore examined what the boundaries are of the useful region
that does contain the information about the magnetic distribution;
these can be found by analyzing the minimal and maximal field
strengths for which a good fit is acquired with the inversion
method. In Fig. 6A, the fit quality is calculated for field strengths
from 0 to a (disks) and from a to 6 (squares), where a is the
dimensionless magnetic field strength (see Eq. (1)). In order for the
inversion method to yield dipole moments in agreement with the
initially simulated distribution, all information about the distribu-
tion must be present in the analyzed part of the magnetization
curve. The upper bound of this range is found by analysing
magnetization curves with increasing maximum field strength
until the R? value comes close to 1, which is found for a > 3. The
lower limit is obtained similarly by varying the lowest magnetic
field value until R? deviates from 1, which happens for @ > 2. From
these two boundaries it becomes clear that all information about
the size distribution is located between a ~ 2 and @ ~ 3 and a good
quality of the measurement in this region is required.
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Fig. 6. (A) Fit quality expressed in a R? parameter (see Eq. (8)) for dimensionless magnetic field strengths from 0 to « (disks) and from « to a = 10 (squares). The region
where both ranges yield a reasonable fit contains most information about the distribution shape. (B) Calculated average dipole moment plotted against the simulated average
dipole moment and (C) calculated and simulated standard deviations of a simulation with 0.01% noise (circles) and 1% noise (diamonds). In both cases the agreement is good.
(D) Correlation coefficient plotted as a function of the number of dipole moment values per decade used for the calculated distribution. With increasing noise, the agreement
at high number of dipole moments per decade decreases. The same happens at a low number of dipole moments per decade due to insufficient resolution to resolve the
sharp peaks. (E) Comparison of the simulated (solid line) and calculated (dots) distribution for a bimodal system with different dipole moments.
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In Fig. 6B and C, the average and the standard deviation of
reconstructed dipole moment distributions are compared with the
distributions used to calculate the magnetization curves. In both
graphs the solid line has a slope of unity, indicating agreement
between simulation and calculation. Fig. 6B shows the average
dipole moment of a sample with 1% Gaussian noise, more noise
than in most experiments; the agreement between simulated and
fitted average dipole moment is still good. The same holds for the
standard deviation. Although the scatter is much stronger if the
sample has a high noise level, in both cases the results follow the
‘best fit’ line well. This good agreement indicates that, although
the noise might be too high to obtain a reliable distribution, the
integrated results are still physically meaningful.

Fig. 6D shows the fit quality, expressed as R?, as a function of
the number of bins per decade of the histogram used to recon-
struct the distribution. At low resolution, the peaks are broadened
and therefore the fit quality is lowered. The fit quality also
decreases if the number of dipole moments per decade becomes
too high. The onset of this decrease depends on the noise, but for
typical experimental systems, this is always above 40 dipole
moment values per decade.

The final test for this analysis method is its capability to
separate two distinct distributions. In Fig. 6E, an example is shown
with different dipole moment ratios, with a noise standard
deviation of 0.1%. In this example, the calculated dipole moment
distributions are in good agreement with the theoretical distribu-
tion, but this strongly depends on both the noise and number of
dipole moment values per decade.

5. Conclusion

In this work, we have demonstrated an inversion method
previously used to analyze light scattering data and now applied
to the analysis of magnetization curves. With this method, the
magnetic size distribution of ferrofluids can be resolved indepen-
dently of an a priori assumed shape of the distribution. Both with
experimental data and numerical simulations, the resulting dis-
tribution is in good agreement with the known distribution of
particle sizes or dipole moments in the test system. Using this
method it is possible to obtain the distribution shape of particle
sizes or dipole moments from AGM, VSM, or other measurement
techniques that yield the magnetization curves of magnetic fluids.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.jmmm.2013.10.025.
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S1 Outline of the algorithm
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Figure S1: A flowchart of the implementation of the analysis method presented in this paper.
Starting with the raw M-H data obtained from the measurements, the first step is correction
for all non-ferromagnetic effects like diamagnetic signals. The mathematical foundation of this
procedure is described in section S3. In the next step the base vector of the dipole moment
distribution is constructed using a geometric distribution of dipole moments within a specified
minimum and maximum dipole moment. The number of points is defined as the number of
subsets times the number of dipole moments per subset. For each subset the reconstruction is
performed by minimizing x? using a NNLS algorithm developed by Lawson and Hanson[1]. If
the reconstruction is complete for all subsets, the final distribution histogram is constructed from
the subset histograms, and this final distribution is saved to disk.



S2 High and low field approximations

The magnetic moment of a ferrofluid of (magnetically-)polydisperse noninteracting spherical
nanoparticles can be described as:

N/,U,P dM+Xd1aH (1)

Here we will determine the shape of M (H) in the low field limit (i.e. & — 0) and the high field
limit (i.e. & — 00) were we use the dimensionless magnetic field strength « defined as:

popH
_ 2
kpT (2)

S2.1 Low Field limit

The Langevin equation in the low field limit simplifies to:

a  popH
L = — =
(@) =3 =37 (3)

Inserting this into Equation 1 we obtain:
M(H) = N [ (uPln)a/3)dn+ xaso ()

which simplifies to:

H
M(H) = N L [P+ sl (5)
poH o
o H
3kpT <:u > + Xdia (6)

S2.2 High Field limit

For ao — 00, the term coth(a) = 1 and by plugging in the definition of o we obtain:

M(H) :N/MP(M)MOW—N/MP(M)édM'i‘XdiaH (7)
_N / WP ()dp — N— / 1)+ YasaH (8)
= N ) = N2 il ©)
=V ) (1 ) (10)
= M, (1 - m) + Xaia H (11)

where My = N (u)

In conclusion, it is shown that in the limits of high and low field, the magnetization curve
is independent of the shape of the distribution, i.e., the integral can be solved analytically, and
these limits can therefore be used to correct the distribution from non-Langevin contributions.



S3 Diamagnetic correction

Before the analysis of the experimental magnetization curves obtained with AGM, in most cases,
a correction for the diamagnetic contribution has to be applied. This correction is especially
important for the outcome of the analysis in the small dipole regime. In this section the method
for this correction is described and its influence on the detection of small dipoles is discussed.
The full experimental magnetization curve, M(H), can be described as:

M(H) = N [ uP ()L By + o (12)

where N is the total number of particles in the sample, P(u) the number fraction of particles
with a dipole moment p, L(u, H) the Langevin function, x4, the diamagnetic contribution and
H the magnetic field strength. In section S2 we derived an equation for the high field part of
the magnetization curve:

kpT
pio (p) H

where (1) is the average dipole moment of the sample. By fitting this to the high field region
of the magnetization curve, the saturation magnetization, the diamagnetic contribution, and the
average dipole moment can be obtained. The magnetic field region where this method can be
applied depends on the smallest dipole moment present. Or the other way around, the choice
of the high field boundary determines the lowest possible value for p that can be obtained. The
approximation of the Langevin function is valid if « is larger than 3 (see figure S2). By combining
this condition with Equation 2 we obtain at room temperature:

M(H) = M, (1 ) + Xaia (13)

pH > 0.98 x 10714A%m (14)

This means that for a typical high field range of H > 10°A /m, the minimal dipole moment which
can be measured is: ~ 1 x 1072°Am?. However, the choice of this boundary does not influence
the minimal dipole moment too much. Even if this boundary is 5 x 10> A/m (more than half
of our experimental field range) the minimal dipole moment increases with a factor of 2. This
implies also that most of the information is present in a small portion of the data (see discussion
of figure 6A in the main text).
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Figure S2: The Langevin equation (blue) and approximations. Above o = 3, the hyperbolic
cotangent part (red) is approximately 1 and the Langevin equation can be described by the
hyperbolic part (yellow) only.



S4 Comparison of the results of a log-normal fit and the
inversion method
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Figure S3: Close-up of the most highly curved region which contains most of the information of
the magnetic size distribution. The blue dots are the experimental data (blue) and the results of
the inversion method (red) and the log-normal fitting method (green) are indicated by the solid

lines.
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Figure S4: A plot of the magnetic moment as function of the inverse magnetic field from which
the saturation magnetization can be determined from an extrapolation to zero. The difference
in apparent saturation magnetization between the raw data (blue squares) and the inversion
method (red line) when compared to the log-normal fit (green line) is evident.



S5 Averaged Dipole moment distributions
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Figure S5: Dipole moment distributions normalized to the total saturation magnetization. The
red and black points are from a similar sample while the green curve has a ten times lower
nanoparticle concentration.
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