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limit. Comparison with a numerical finite-element method displays good agreement, making the advan-
tage of an analytical method over grid-based methods evident.
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1. Introduction

Analytic expressions for the magnetic fields produced by inher-
ently magnetic materials or induced in magnetically susceptible
materials, are only well-known for some classic textbook cases,
such as the field of point multipoles and infinitely long wires car-
rying a current [1-4]. In the past, many papers on demagnetization
factors [5-11] and cylindrical ferromagnets [12-15] have been
published. In demagnetization tensors with regard to uniformly
magnetized finite cylinders, implicit analytic expressions have
been incorporated [16,17]. Kraus [16] applies a magnetic surface
charge method using integrals that contain Bessel functions. Tan-
don et al. [17] and Beleggia et al. [18,19] employ a Fourier trans-
form approach. Herein use is made of a shape function that is
equal to the trace of the demagnetization tensor, which connection
is difficult to derive from the commonly used magnetic surface
charge description. Magnetic fields of complex geometries often
can be solved only numerically via finite element methods (F.E.
M.) [20,21]. However, the domain discretization inherent to these
methods may ultimately lead to numerical inaccuracies, unless
expensive higher-order calculations are performed, or the calcula-
tion mesh is refined. The analytic modelling of the field has a clear
advantage over finite-element methods as the necessary magnetic
quantities can be probed at all required coordinates, with minimal
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computational effort. This is highly useful, for example, when
dynamical systems are modelled, such as the movement of
magnetic nanoparticles in magnetic field gradient [22,23].

A geometry for which analytical expressions for magnetic
quantities are readily available, is an axisymmetric solenoid of
finite length [24-27]. Exact expressions for the vector potential
®, magnetic flux density B (with axial and radial components),
magnetic force F= (m-V)B, where m is the magnetic dipole
moment of the object, and other quantities can be formulated
using special functions such as elliptic integrals. The derivation
of these expressions usually extends the treatment of a single
circular current loop by integrating over a certain length along
the symmetry axis of the loop [28,29]. The solenoid field also
describes the field of a cylindrical uniform permanent magnet with
its magnetization vector M along the axis of symmetry (longitudi-
nal magnetization). For different magnetization directions, such as
M perpendicular to the axis of symmetry (transverse magnetiza-
tion), other field equations are required. In the case of transverse
magnetization, explicit analytical results are available for an infi-
nite cylinder [2,30], and for the on-axis field of a finite cylinder
derived by Wysin [31]. To expand upon these known relations,
we have derived an explicit, analytical expression for the magnetic
field of a transversely, uniformly magnetized finite cylinder in all
spatial field points, inside as well as outside the cylinder. By com-
bining the expression for longitudinal and transverse magnetiza-
tion we will also demonstrate the possibility of accurately
calculating the resulting magnetic field for a cylinder with an
arbitrarily chosen magnetization vector.
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The expressions derived here are applied to the modelling of a
high-gradient magnetic separation process, using a separation filter
comprising many small magnetizable fibres. By combining the local
magnetic fields of a large collection of (non-overlapping) cylinders,
we aim to calculate the movement of magnetic nanoparticles
through such a separation filter [32] and whether, ultimately, the
nanoparticles can be trapped by the filter. In this paper, in addition
to the calculations for a single cylinder, we explore the possibility
to calculate the magnetic field for a combination of multiple cylin-
ders by means of our analytical expressions, which is also relevant
for a broad range of other applications [33-35].

2. Preliminary

Consider a circular cylindrical body of radius R and semi-length
L, with its centroid at the origin of a cylindrical coordinate system
(p, ,z) and its axis aligned with the z-direction (see Fig. 1). A uni-
form magnetization of the body along an arbitrarily chosen magne-
tization vector M can always be decomposed into a longitudinal
and transverse component,

M = Mz + M;p 1)

In reality, for a magnetizable material, the acquired magnetiza-
tion will in general not have the same direction as the applied field
Hex:, as the magnetization vector will rotate to minimize its energy
depending on the magnetic susceptibility of the material and the
demagnetization factors of the body. The Stoner-Wohlfarth model
describes this principle in detail [36,37]. In general, the magnetiza-
tion is related to the magnetic field H, the magnetic flux density B
and the permeability of vacuum p, through,

B = ity(H + M) 2)

We proceed by restating the known expression for B for longi-
tudinal magnetization [25,27] and continue by deriving an expres-
sion for the case of transverse magnetization. The validity of the
equations are tested by determining several limiting cases. By
combining Eqgs. (1) and (2), the field of a finite cylinder with an
off-axis magnetization vector is calculated and these results are
compared with numerical calculations. Finally, the applicability
of our model to the description of magnetizable cylinders are
tested against the results of a finite element method.

3. Longitudinal magnetization (review of past work)

Equations for the field inside and outside a longitudinally magne-
tized, finite cylinder were first retrieved by Callaghan and Maslen
[25]. They obtained their result by considering a finite cylinder as
a collection of current loops (i.e. an ideal solenoid). The total magne-
tization is M = nl, with n the number of turns per unit of length and I
the current per turn. By applying the Biot-Savart law, the magnetic
field can be calculated directly in terms of elliptic integrals. Derby
and Olbert [27] revisited the derivation and provided a computa-
tionally convenient form using a combination of generalized com-
plete elliptic integrals [38]. They correctly retrieved the field of a
current loop in the limit L — 0 and the far-field limit of a point dipole
at large distances from the cylinder.

In Derby and Olbert [27] only an integral form of the field equa-
tions is given. Here we restate these results in closed form, in terms
of elliptic integrals, obtaining equations similar to those for the
transverse case presented in the following section.

B, = 'MOQ/IR [0, Py (K, ) — 0Py (k)]
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Fig. 1. Schematic representation of a magnetized cylinder of semi-length L and
radius R with an arbitrary magnetization vector M. The cylindrical (p, ¢,z), and
Cartesian (x,y, z) coordinate systems are indicated.

where B, and B, are the radial and axial components of the mag-
netic flux density, respectively. Two auxiliary functions are defined
(see Appendix A) as,
2
Pi(k)=K T (K=¢)
1 2 (4)

1
1—9?

and the following shorthand notations will be employed:

&, =z+L

— 1 —F
% = 2 +(p+R)? Be = cuone (5)
, PR : _E+(p-R?

p+R 24 (p+R?

The symbols K, £ and P are used to indicate the evaluation of the
complete elliptic integrals of the first, second and third kind, as
follows,

—(F___d
( =b V1-(1=K)sin? 0
:E( 1—18) = [2d0y/1— (1 —K*)sin?0 (6)

&
P :H(l—yz,m> = @

(1-(1-92)sin? 0)3/1-(1-K) sin”

Note that B,, is absent in Eq. (3) due to the radial symmetry of the
system. A visualization of the magnetic field lines produced by
these equations is given in Fig. 2a.

4. Transverse magnetization

To derive the field equations for a transversely magnetized
cylinder, we follow the approach of Callaghan and Maslen [25]
and Derby and Olbert [27]. We start by choosing a magnetization
vector perpendicular to the long axis of the cylinder. A convenient
choice is a magnetization along the Cartesian x-axis, M = MX,
although any direction in the xy-plane would be suitable for sym-
metry reasons. Assuming there are no free currents present, the
magnetic field can be expressed as the gradient of a magnetostatic
scalar potential

H= -V, (7

In the following, we derive the exact expression for the potential
®,,. The components of the H-field can be derived following similar
mathematical manipulations, but only the final results will be pre-
sented in Section 4.2.
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Fig. 2. Magnetic flux lines and density plots for a cylinder (R =1, L = 3) with longitudinal (a), transverse (b) and (c), and off-axis magnetization (d). The outline of the
cylinder is marked with a black rectangle or circle. The colours indicate the magnitude of the B-field strength (blue = low, red = high).

4.1. Magnetostatic potential

In general, the magnetostatic potential at a point r can be writ-
ten as [2],

,_p(r)
d(r) :/vdr pror (8)

using the bound magnetic charge formulation, where p(r') is the
volume charge density. One may recognize Green’s function for
the Laplacian, G(r) = (4xt|r|)"". In the problem of interest, the vol-
ume charge density reduces to a surface charge distribution o on
the lateral surface of the cylinder. In cylindrical coordinates this is
given by a(¢’) = Mcos ¢'. The integral in Eq. (8) is now reduced
to an integral over the surface of the cylinder,

Rcos ¢’
\/p2 +R? —2pRcos(p — @) + (z — 2)?

M 2n , L
p.9.2) =g [ dof [ az
©)

We proceed by evaluating the above integral in several steps, to a
functional form containing elliptic integrals. First, the integral over
Z' is evaluated, giving,

&

MR 2n

VIR ’ / 2 2 2 Y
an J, do cos<oln(é+\/é + p? +R° —2pRcos(¢p (p))

&
(10)

where the substitution ¢, =z + L from Eq. (5) is introduced.
Integration by parts can be applied, leading to the somewhat
involved expression,
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Evaluation of the first term between square brackets shows that it
vanishes. The remainder can be rewritten to,
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The integral over ¢’ is solved by two consecutive changes in inte-
gration variable. First, 2y = © — (¢ — ¢’), resulting in,

(12)

e
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where sin ¢’, sin(¢ — ¢’) and cos(¢ — ¢') have been evaluated in
terms of basic trigonometric functions. It can be shown that the first
term between the larger parentheses does not contribute to the
integral, leaving,

2MpR*cos ¢ ["°% v cos? y sin’ y
T 59 p? + R* — 2pR(sin®  — cos? y)

&

4
8 <
\/ij + p? +R? — 2pR(sin® y — cos? y)

(14)

Making use of the shorthand from Eq. (5) and applying a second
change in variable, siny = x, allows us to write,

p? +R* —2pR(sin’  — cos? ) = (p+R)* (1 -x*(1—7?))
2+ p? +R* —2pR(sin*y — cos?y) = (gi +(p +R)2> (1 X1 —ki))

(15)
which upon substitution into Eq. (14) leads to,
2MpR*cos ¢ [<2 (1-x2)x2 B.
R a L RV IT )
o +R? S cost -x(1-y )\/(1 _x2)<] _X2<1 —ki))
(16)

Note the additional factor 1/v1—x2 entering the expression
because of the change of variable. A more convenient form of this
integral is found by applying the following substitution,

1-x)x 1 2 i 72 1
T-x(1-72) 1-9p2\1-y? T-p21-x(1-7)
(17)

Splitting the integral in Eq. (16) according to the terms in Eq. (17),
gives three separate integrals representing (combinations of) ellip-
tic integrals of the first, second and third kind.

The full expression now becomes,
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(18)

Each term can be evaluated using tabulated integrals (cf. Ref. [39]).
After some elementary rewriting, a concise final result is obtained,

MR cos
0 =" g k) - pps(k )] (19)
where we define the auxiliary function P;(k) as,
Pyk) = — (k—&) - (p_k 20
3()—@( *)*1773)2( -K) (20)

4.2. Magnetic field

To obtain expressions for the magnetic field components in Eq.
(7), the derivatives of the scalar potential ® in Eq. (19) can be taken
directly. Alternatively, the derivatives can be taken in Eq. (9),
followed by a similar mathematical treatment as was used for
the scalar potential. For brevity, only the final expressions are
presented here:

o MR cos
Ho =3 = oy BPalks) —pPalk )
_ 100 _ MRsing _ 21
o = Sap — mp PPk =B Pak)] (21)
ob MR cos
H =2 = Tq’[om (ky) — o_Py (k)]

where an auxiliary function P, is defined as,

L (P K) — Pi(k) (22)

Py(k) = L (P—K) + 5 1

1—72

Computational effort in the evaluation of these equations is
minimal, because of the availability of efficient algorithms to
calculate elliptical integrals [40-42]. Fig. 2b and c show a graphical
representation of the field lines for a cylinder with transverse
magnetization.

Note that analytical expressions for the derivatives of Eq. (21)
can be derived easily. This enables the calculation of magnetic
forces through F = (m - V)B for all points in space, except on the
cylinder surface edge. Forces are typically required when perform-
ing molecular dynamics (MD) modeling, such as Brownian dynam-
ics simulations of nanoparticles [32].

4.3. Combined action of orthogonal magnetization components

Knowing the magnetic field equations for a cylinder with fully
longitudinal and transverse magnetization (Egs. (3) and (21)),



A. Caciagli et al./Journal of Magnetism and Magnetic Materials 456 (2018) 423-432 427

allows the calculation of the field also for intermediate magnetiza-
tions. By decomposing the total magnetization in its longitudinal
and transverse contributions according to Eq. (1), the magnetic
field for an off-axis magnetization direction is calculated. For the
magnetization direction M = (1/v/2,0,1/+v/2), the resulting field
is shown in Fig. 2d.

5. Limiting cases

In this section we evaluate some limiting cases for the trans-
versely magnetized cylinder, Eq. (21), and compare these with
known expressions from literature. For a treatment of the limiting
cases for a longitudinally magnetized cylinder see for example Cal-
laghan and Maslen [25].

5.1. Infinite cylinder
In the limit of an infinite cylinder, L — oo, we have k=1 and
B, = +1. This simplifies the auxiliary functions for the radial and

angular components in Eq. (21) to,

[ﬁ+P4(K+) - [3,[’4(}(,)] = nM A

= vy (23)
1 2_2 N2
[B.P3(rc.) — B_P3(xc)] = g %/_

The z-component correctly vanishes when evaluating the limits.
These expressions contain a square root term accounting for points
outside (y > 0) and inside (y < 0) the cylinder. Substitution of Egs.
(23) into (21) gives for the radial and angular component, after
some rewriting,

M R?
Hp:{zﬂzcosqo, 7>0 24)

u _{’yﬁi sing, >0
M ¢~
—-3cosp, y<0

Ysinp, 7<0

which are identical to the known expressions from classical magne-
tostatics [2,30].

5.2. Field on axis

The magnetic field along the axis of the cylinder is found by
evaluating Eq. (21) in the limit of p — 0 and ¢ = 0. No angular
or z-component will be present. In this case we have
Bo=¢/V(E +RY), cosp=1 and the elliptic integrals
K=&=P=m/2,so that P4y(k) = —Z(1+7)/(1 — ). We can write,

 MR1+y & & (25)
WI1-7\\/J2+R J2+F

The term R/p(1+7)/(1 —7v) equals unity so that now the same
expression is obtained as in [31],

HP(O7 072) =

M ¢ &

H,(0,0,2) = —— s - (26)
\/E+r 2R

Evaluating the field in the origin z = 0 gives,
M L -Y¥ ifL>R

H,(0,0,0) = — = ——== 2 27

again in agreement with earlier findings [31].
5.3. Far field limit

For the field far away from the cylinder, p,z > R, L, the field of a
point dipole should be retrieved. The far-field limit is identical to

the limit of R,L — 0. We can arbitrarily set ¢ =0 to eliminate
the angular dependence through sin¢ = 0. To obtain the field
equations, we make a first order series expansion around L = 0, fol-
lowed by an additional expansion around R = 0. It is impractical to
perform these expansions on the final results in Eq. (21) directly.
We therefore start by considering the partial derivatives
H, = —0®/0p and H, = —0®/dz in integral form (see Eq. (21), com-
ing from Eq. (9)). For the radial component we have,

MR 2n
ar J, d¢' cos @

p—Rcos ¢’ ¢
pz+R2*2RPCOS‘/’/\/§2+p2+R2—2pRcosq)’ V
28)

The first order expansion of the argument of the integral around
L = 0 gives,

2n _ ’
Mz—iL d¢’ cos ¢’ p—Reosg 7 (29)
0 (22 + p2 +R* —2Rpcos (p/)
Performing a consecutive expansion around R = 0 results in,
MRL *™ [ pcosqg’  R(z*—2p?)cos? ¢’
2 / d 32 5/2 (30)
T Jo (2 +p?) (2 +p?)

Evaluation of the integral eliminates the first term. Solving the
remaining integral immediately leads to the final results for the
radial component,

MR’L 2p? -2
Hy == P 61)
(Z+p?)
For the z-component, we follow similar steps, starting with,
MR (2" 1 .
I do' cos ¢’ (32)
T Jo \/§2+,02+R272pRcosq)'_
where the expansion around L = 0 leads to,
MRL [* | , z
s d¢’ cos @ 72 (33)
0 (22 + p2 +R* — 2pRcos (p’)
The second expansion around R = 0 gives,
MRL %" zcos@'  3zpRcos? ¢/
_ MRL / dg’ ¢ ZPRCOS 9 (34)
21 Jo @+ @+ p?)”

As before, the first term in the integral cancels out, so that the final
solution is given by,

_MR’L  3pz

5/2

H, __p
2 2+

(35)

Egs. (31) and (35) match the field for a point dipole [27], where only
the radial and z variable are swapped because the alignment of the
magnetization vector here is along the x-axis and not the z-axis.

6. The demagnetization tensor of a cylinder
6.1. Introduction

For a uniformly magnetized sample of arbitrary geometry, the
demagnetization tensor is defined as [43,44]:

H(r)= -N°(r)- M (36)

where M is the uniform magnetization vector, H is the magnetic field
(also known as the demagnetizing field), r = (x,y, z) is the point loca-
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tion and N” is the demagnetization tensor. In the general case H is
non-uniform (here illustrated by its dependence on r) and N” as
defined above is also known as the point-function demagnetization
tensor. Its volume average defines the magnetometric demagnetization
tensor [44]:

(H(r)), = -N"-M (37)

where (...}, denotes the average over the sample volume and N" is
the magnetometric demagnetization tensor. Clearly, it follows that:

NV = % / dVNP (38)
v

Both the point-function and magnetometric demagnetization
tensor N possess notable properties, such as unitary trace
(Tr(N) = 1) and symmetry (Nj = Nj; for i+ j) [44]. Additionally,
due to their symmetric nature, the tensors can always be diagonal-
ized by choosing a suitable base. In particular, the principal values
of the diagonalized N” (which correspond to its eigenvalues) are
known as the magnetometric demagnetization factors.

In the following we will derive the demagnetization tensors N
and N™ as well as the demagnetization factors of a circular cylinder
on the basis of the exact analytical expression of the demagnetiz-
ing field H for said geometry.

6.2. The point-function demagnetization tensor

Consider the uniform magnetization to be alternatively in the

orthogonal x,y and z directions. Then M = Mj where j =x,y,z.
From its definition, it follows that:

Hi(r) = —-N{M 39)

with i,j = x,y,z. H; denotes the component of H in the i direction
due to the magnetization M = Mj. Inverting the previous relation
gives the value of the tensor elements as a function of the field H.
These are uniquely determined by the relation:
1 .
p : .
NuzfﬂHl M:M] L)=XY,Z (40)
in which the magnetization condition for each relation is reported. The
relations can be expressed analytically by inserting the values of Hy, H,
and H, as obtained when discussing the longitudinal and transverse
magnetization cases, with the coordinate transformations:

Hx(x.y,2) = H,(p, @,z) cos ¢ — Hy(p, ¢.2) sin (41)
H}’(vaaz) = Hﬁ(p7 (/)72) sin ®+ Hﬂ’(pa (/)72) cos @ (42)
Hz(xvyvz) :Hz(pv(pMZ) (43)

with p = /x> +y? and ¢ = arctan(x/y).
Solving explicitly the relation (40) for all combinations of i and j
yields the final result in a compact form:

2
N} (p.9.2) = 0005 P P2 S gl o) (L) - L)} (44)
k=0

with the matrices & defined as:

1 10 0 1 0 0 coso
B@)=z[0 1 0| a@=5| 0 0 sing
0 0 -2 cosp singp 0
—cos2¢p -—sin2¢ 0
Og(p)=—| —sin2¢p cos2¢p 0 (45)
0 0 0

and the auxiliary functions L; defined as:

L) =22 e~y (46)
Ro.. 2

Li(£)=- :(C (Ki - W(Ki - 5i)> (47)

L(+) :nﬁ—piz<f;—i$i+(§i+p2+2R2)lCi+yR2 m) (48)

It can be shown that such a tensor is symmetric and possesses uni-
tary trace, in agreement with the general properties of the demag-
netization tensor outlined in the previous section. The solution (44)
is equivalent to that reported by [19], which corrects the solution by
[17]. As an example the equivalence of the term N, is provided in
the Appendix B.

6.3. The magnetometric demagnetization tensor

By inserting the relations (40) in Eq. (37) the elements of the

tensor N can be obtained. The actual calculation require the eval-
uation of the volume integrals of the point-function demagnetiza-
tion tensor, that is:

N’-‘-":l/dVN'-’-:l/Hdz/znd(p/kdppN’-’-(p 0,2) (49)
vy v 0 0 R

expressing the integral in cylindrical coordinates. It is trivial to
show that, by performing the angular integration, all the terms
depending on &(¢) and &;(¢p) vanish. This leaves us with only
the diagonal terms in the form:

N =0+ 37 [ dz [ dpp{ailo() - Lo(-)}) (50)

The integral over L is solved explicitly in the Appendix C. Here we
report the final result:

[ avito()~Lot-)
~2v—am {38 (1L (1 - myctm) - 1 -2 yc(m)] )+
(51)

with m = Rz’f - Inserting this result into the previous equation we

arrive at the final exact result for the magnetometric demagnetiza-
tion tensor:

N = 613+ 2000 (1 %{% <1 7% [(1-m?)K(@m)-(1 72m2)5(m)]> +L}>
(52)

The diagonal of the tensor (that is, the only non-zero elements)
gives the three demagnetization factors for a uniformly magne-
tized cylinder. The solution is equivalent to that of Tandon et al.
[17] and proves the complete equivalence between the real space
route adopted in this study and the Fourier space approach used
by Tandon et al.

7. Numerical validation

The validity of our analytical approach is tested by comparison
with numerical calculations via F.E.M. analysis (performed with
MagNet 7.5, Infolytica Corporation). As a first case we consider a
single, permanently magnetized cylinder, aligned with the symme-
try axis along the z-axis of a Cartesian coordinate system. The
cylinder has a radius of R = 0.3 m and semi-length L = 6.0 m. Note
that due to the nature of the software, object dimensions must
have units, but this is not expected to influence the qualitative
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Fig. 3. Relative configuration of the three cylinder case. The permanent magneti-
zation direction for the three unrotated cylinders is identical.

magnetic behaviour of the object. Its material properties are set to
represent an ideal permanent magnet with a fixed magnetization
direction and a magnitude (scalar coercivity as defined in Magnet)
of 800,000 Am™, in order to generate a B-field of approximately
1T. For the single cylinder, three magnetization directions are con-
sidered: completely longitudinal, completely transversal, and a
combination of two orthogonal vector components with magneti-
zation vector M = (1/v/2,1/v/2,0). As a second case, a set of three
cylinders with different orientations and positions is considered
(see Fig. 3). The permanent magnetization direction in each cylin-
der is equal to M = (1/v2,1/v/2,0) in the local frame of reference
of the cylinder.

The magnetic field is calculated using the built-in solver of Mag-
Net, ensuring that the calculation mesh in the vicinity of the cylin-
der surface(s) is sufficiently fine-grained. The field components
B:,B, and B, are sampled on the three perpendicular Cartesian
planes through the origin, with 50 sample points per unit length
along each axis. The field is also calculated for all sampled points
using our analytical model. The correlation between the values
from the analytical and numerical model is determined for each
case by plotting the numerical values against the analytical values,
and by calculating the coefficient of determination R?, using the
Pearson product-moment correlation [45].

As an example result, the comparison for the three cylinders
case measured across the xy-plane is shown in Fig. 4. The agree-
ment between the analytical model and the numerical results is
good (in all cases R* > 0.99), confirming that the superposition of
multiple object fields through the combination of transverse and
longitudinal magnetization components gives correct results. Any
noise is due to the mesh-based approach of the finite-element sol-
ver, giving rise to artefacts near the edge of the cylinder, where
there is a discontinuity in the field.

8. Conclusions and outlook

We have derived an analytical expression for the magnetic field
of a transversely magnetized cylinder of finite length, as an addition

to the known expression for longitudinal magnetization. The for-
mulation in terms of elliptic integrals allows for the evaluation of
the field strength at any desired field point, except exactly on a sur-
face edge. Combining both expressions allows the calculation of the
magnetic field of a cylinder with an arbitrary magnetization vector.

A comparison has been made between the analytical expression
and finite-element numerical calculations for magnetized cylin-
ders. Our results are in good agreement with finite-element calcu-
lations, and provide a mesh-less solution without artefacts.

It is also possible to calculate the gradient of the magnetic field
analytically. This is especially convenient for applications where
magnetic forces on magnetic dipoles need to be calculated, for
example in the simulation of the movement of magnetic (nano)
particles in a field gradient.
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Appendix A. Rewriting the generalized elliptic integral

Derby and Olbert [27] provide an expression for the magnetic
field of a longitudinally magnetized cylinder (equivalently, an ideal
solenoid of finite length) in terms of a generalized complete elliptic
integral, C(k.,p,c,s). This integral is evaluated numerically by an
efficient computational procedure [38]. We find it useful to express
C in the more commonly used complete elliptic integrals of the
first, second and third kind to obtain expressions similar to Eq.
(21). The generalized complete elliptic integral is defined in Derby
and Olbert [27] as

ccos? @ +ssin’ @

\/cos? @ + kZ sin® go(cos2 @ + psin’ (p)

(A1)

/2
C(kmp,c,s):/ do
0

For the evaluation of B,,C(k.,1,1,-1), is required, simplifying Eq.
(A1) to

/"/2 do cos? ¢ — sin’ @
0 \/cos? ¢ + ki sin® @ (cos2 @ + sin® (p)

We now make a change in variable sin ¢ = x, and rewrite to obtain,

(A2)

/‘1 dx (1-x%) —x2
0 VI-x \/(1 —x2) + 22 (1 —Xx2) +x2)
= ! dx !
0 \/(1 —x2)(l - (1 - ki))@)
1 xz
2 (A3)

0 \/(1 7x2)(1 - (1 fki)xz)

These integrals can be solved immediately using tabulated func-
tions [39] (eq. 8.112). This gives finally,

Clhe1,1,-1) =K —2(1-K) (K—¢&) (A4)

Where the usual substitutions have been made (see Eq. (6)). This
result is used in Eq. (4) as P (k).
For the evaluation of B,, C(k.,y?,1,7) is needed,” resulting in

2 The fourth argument in the expression for C changes sign here with respect to the
corresponding expression in Derby and Olbert [27], because of our change of sign of }.
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Fig. 4. Comparison of the analytical model and numerical calculations of the magnetic field (in T) sampled at the xy-plane for a configuration of three cylinders (see Fig. 3).
The top row shows our analytical calculations and the bottom row shows the results from the finite-element calculations in MagNet. The good agreement between the two is

visible from the correlation plots in the middle row.

/2 2 in?
/ do COS“ @ + ysin” @ (A5)
0 \/cos? @ + I sin® qo(cos2 @ + 72 sin’ (p)
Following as before gives,
/‘1 dx (1—x2) —yx2
0 VI=% 1) +2x((1-x) +720)
1
= / dx !
Jo \/(1 - x2)<1 - (1 - ki)xz)u — (1 - y2)x2)
1 2
1+ y)/ dx X
0 \/(1 7x2)(1 - (1 - ki)xz)(l —(1-p2)%2)
(A6)

Evaluating these integrals leads to the final result, which is used in
Eq. (4) as Py (k).

Clke 2 1,9) =P — (14 9) (P K)

1—7y?
_1-9? 1 ?
TP PR R (P (A7)
1 2 Y
= (PR (P K

Note that in all cases, the evaluation of the integral at y = +1
(i.e. evaluation at p =R) leads to division by zero, so that the

field on the surface of the cylinder cannot be probed by these
formulas.

Appendix B. Equivalence of N%, with that of Ref. [19]

Let us first rewrite the main result from Lang [19], Eq. (36):

Ng(Py(f%Z) :5i35j3D(p7(P7Z)

, €5 (Uu(p. &) ~1u(p.&2) z>1
3@ ()] € (Uu(p.0)~1u(p. ) € (1u(p.0) ~1u(p.E)) |2l <L
" €5 Uu(p.E) ~1u(p.E) z<-1
(B.1)

with &, = [z+L| and D(p, ¢,2), %;(¢) and €; as defined in [19] Egs.
(35) and (25). The terms I, are integrals of the Lipschitz -Hankel
type:

(p.o) = /o " K, (K)), (Kp/Rye K (B2)

where J; are the Bessel functions of the first kind. Solving the sum-
mation for the specific case i = 1,j = 1 gives:

N:, = 2 (1 =0} — cos 20 (1= 2))

where the terms {...} are a contraction for the corresponding terms
in the summation in Eq. (B.1).

The integral Iy(p, £,) solves to (Eq. (38) in [19]):

(B.3)
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eV "i/cif Ao(B.,k)+1 p<R

21
lo(p, &) =< - %;ﬂv\’/;_’;i -
E/1-K2

27R\/pR

p=R (B.4)

N|—=

Ki+3Ao(f ., Ks) p>R

with sin®(x.) = —2R¢__and g/, = arcsin(o.&,/5c.) and Ao(f,, K=)

(p+R)*+2
is Heuman’s Lambda Function as defined in [46]. The integral

L(p, &.) solves to (Eq. (44) in [19]):

2VRE, £ é;\/l—ki(ii+p2+2R2)K
/1=K p3/2 2mV/Rp5/2
2VREL € EV/1-1(2 +p*+2R?)

— B No(B k) +5 p>R

L(p.&)= i JE T T i Ky — £y p=R
1 E/1-12 2R?)
A SO S A (BKs) <R
(B.5)

By switching &, for ¢, as defined earlier (that is, explicitly writing
the absolute value) and using the results Ag(0,x) =0 and
Ao(m/2,x) =1 (which can be easily proven using the definition of
Heuman’s Lambda and the Legendre Relation for elliptic integrals),
it is possible to greatly simplify all the cumbersome cases for p and
z in Egs. (B.4), (B.5) and (B.1) to a single, more elegant result:

1
N, = Zl({LO(+) —Lo(—)} —cos2¢ {Ly(+) — La(—)}) (B.6)
with:
E/1-K Y
Lo(4) = 25V - Ty LA ;/ B.7
O T/ ST o7
. 1-k +p*+2R
oy 2R E1-K@E +p? e 2R
. ]—kip3/2 27VRp52
wR? ,
+ WAOW £ Ks) (B3)

Lastly, Heuman’s Lambda function can be expressed in terms of
complete elliptic integrals [47]:

No(f 1) =211

This leads to the final result for the auxiliary functions L; after some
refactoring:

ELo Py (B.9)

Lo(+) = P2 e~y (B.10)
Lz(i)zj—;z( ;2 Eit (B 4+ p? +2R)K. + R Pi> (B.11)
Now we explicitly solve for the first relation in 40:
NP = —%H =l(H cos ¢ — H,sin @)
= an {B.(Pa(ky) cos @* — 2P5(k,.) sin ¢?)
—B_(Pa(k_) cos ¢ — 2P5(k_) sin ¢*)} (B.12)

where NP_indicates the derivation according to our field expres-
sions. Upon explicitly writing the auxiliary functions P; and Py,
the following result follows:

—7P-)}

(& + p + 2R)K, — "/R27’+>

)

/ 1
N = E{ﬁJr(KJr —yPy) — B_(K-
cos2¢ o
" amp? {ﬁ : (OTi_

5 (i—z— @

24 p? +2RK. - (B.13)

It is trivial to show that this expression is equivalent to Ny, as
derived above. The demonstration can be extended to all the other
tensor components, thus giving complete equivalence between the
formulations.

Appendix C. Integral of Lo(+)
The integral to be solved is the following:
[ av o) ~Lo(-)
v

Before starting we write some useful relations and identities
[46,48]

(<))

1d ¢ i i—k
X dx {X]i(x)}:X Jik(Xx) (C2)
| e @) =~ 2 (it - g4 Pem)) + 4
0 e 2mavab b+a
(C3)
00 2
opJi(ax) _ 4a 2 _(1—-2m? _
/0 e U = 20 (1 m)K(m) - (1 - 2m?)s(m)) — p
(C4)
where J; are the Bessel’s Functions of the First Kind and k* = 7 ‘(‘gi o7

m= W and g = (azfzf)z‘ Furthermore, (a,b,p > 0) and (a > b).

We start by expanding the auxiliary function Ly in the integral

[ 4V ) ~Lo-) = [ dv L(p. (. ~yP) - (k- —yP)
+L 2n R
B P _ .
[ ez [ ao [dp, Lo o I
+k_(L-z)(K_—yP_)} (C5)

where we made use of the definition of 8, and inverted the sign for
the negative term. It is now possible to use C.3 and the definition

Y= ” R z to rewrite the result, arriving to the expression:

/_L iz /Omd(p / dp Ro{g— [ dx(en e M Ruo(on) |

(C6)

where p, =L +z In the limits of integration, p, > 0 and thus the
use of (C.2) is justified. By solving for the unity terms and rearrang-
ing the integral order, we arrive to:

+L 00 R
2V - 27k / dz / dx(e P + e, (Rx) / dp plo(px)
L 0 0

+L o
:2V727'CR/ dz/ dx(e P +eP X)h(ﬂ
-L 0 X
“dp XJ1(px)) = 2V — 27R?
< [ do g5 () =2V -

></ dz/ dx(e P +eP x)fl(RX)

X (€7)

where we have used (C.2) in the second passage. We can again
change the integration order to have:

2V — 27'ER2/ dx]1 / dz(e P+ 4 e P-¥)

=2V — 4nR? dx]l—) dz’ (e7%%)
0 X

0

0 2
=2V — 4nR? / dle(%(l — e 2 (C.8)
0
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where in the second passage we applied a change of variable
Z = L4z to reduce the two exponentials to a single term. The
resulting integral can be split as:

0 72 0 2
2 —anfdR [ ax L [T e (RY” (C.9)
0 XIZ 0 XZ

Both the terms can be separately expressed in terms of C.4, yielding
the final result (with m = &):

/V AV (Lo(+) — Lo(—))
:2V—47IR2{% (1 —% [(1—m?)K(m) - (1 —2m2)8(m)]> +L}

(C.10)

Appendix D. Supplementary data

Supplementary data associated with this article can be found, in
the online version, athttps://doi.org/10.1016/j.jmmm.2018.02.003.
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