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Abstract Recent ice shelf retreat on the east coast of the Antarctic Peninsula has been principally
attributed to atmospherically driven melt. However, previous studies on the largest of these ice shelves—
Larsen C—have struggled to reconcile atmospheric forcing with observed melt. This study provides the first
comprehensive quantification and explanation of the atmospheric drivers of melt across Larsen C, using
31‐months' worth of observations from Cabinet Inlet, a 6‐month, high‐resolution atmospheric model
simulation and a novel approach to ascertain the surface energy budget (SEB) regime. The dominant
meteorological controls on melt are shown to be the occurrence, strength, and warmth of mountain winds
called foehn. At Cabinet Inlet, foehn occurs 15% of the time and causes 45% of melt. The primary effect of
foehn on the SEB is elevated turbulent heat fluxes. Under typical, warm foehn conditions, this means
elevated surface heating and melting, the intensity of which increases as foehn wind speed increases. Less
commonly—due to cooler‐than‐normal foehn winds and/or radiatively warmed ice—the relationship
between wind speed and net surface heat flux reverses. This explains the seemingly contradictory results of
previous studies. In the model, spatial variability in cumulative melt across Larsen C is largely explained by
foehn, with melt maxima in inlets reflecting maxima in foehn wind strength. However, most
accumulated melt (58%) occurs due to solar radiation in the absence of foehn. A broad north‐south gradient
in melt is explained by the combined influence of foehn and non‐foehn conditions.

Plain Language Summary The recent rapid retreat and collapse of ice shelves on the east coast of
the Antarctic Peninsula is known to be primarily a result of enhanced surface melt due to climate warming
and changing atmospheric circulation patterns. However, previous studies have struggled to reconcile
observed melt patterns with meteorological conditions. Here we provide the first quantification and
explanation of the atmospheric drivers of melt across Larsen C, the largest ice shelf on the Antarctic
Peninsula. We find that variability in melt across Larsen C is primarily governed by mountain winds known
as foehn, with melt maxima in ice shelf inlets coinciding with the strongest foehn winds. Foehn air is usually
much warmer than the ice below, resulting in elevated heating and melting of the ice, the intensity of
which increases with increasing wind speed. However, in rare cases where the foehn air is not significantly
warmer than the ice, the relationship between melt and foehn wind speed reverses, which explains the
seemingly contradictory results of previous studies. While foehn causes the highest melt rates,
non‐foehn‐driven melt is more common and, via summertime solar heating, is responsible for most of the
accumulation of melt across the ice shelf as a whole.

1. Introduction

The retreat and collapse of ice shelves on the Antarctic Peninsula (AP) over recent decades has been princi-
pally attributed to surface melt due to atmospheric warming (Cook & Vaughan, 2010; Holland et al., 2011;
Leeson et al., 2017; Scambos et al., 2000; Valisuo et al., 2014; Van den Broeke, 2005). Changing southern
hemispheric circulation patterns have led to increased warm air advection into the region via a strengthen-
ing of the prevailing circumpolar westerly winds and also to an increase in the frequency and strength of
low‐level warming events to the east of the AP caused by mountain‐generated local winds known as foehn
(Cape et al., 2015; Marshall et al., 2006; Orr et al., 2008; Van Lipzig et al., 2008). This foehn warming effect
has led to asymmetrical warming across the AP in summer, the warming rate to the east being considerably
greater than that to the west (3 times as great at the northern tip; Marshall et al., 2006). The Stretching along
the Peninsula's east coast, the Larsen Ice Shelf, first mapped in 1893 (Larsen, 1894), is composed of four
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distinctly evolving components (Vaughan & Doake, 1996). The northernmost two components—A and B—
disintegrated in 1995 and 2002, respectively. The disintegration of Larsen B was immediately preceded by
extensive meltwater ponding and high levels of ice densification (from the refreezing of meltwater in the firn
layer), a known precursor of ice shelf collapse (Holland et al., 2011; Kuipers Munneke et al., 2014).
Immediately to the south, Larsen C is the largest ice shelf on the AP and is presently intersected by the mean
annual (near‐surface level) −9°C isotherm; loosely approximating the upper limit for ice shelf viability
(Morris & Vaughan, 2003). Densification in the northwest embayments, or inlets, of Larsen C is approaching
those levels observed in Larsen B immediately prior to its collapse (Holland et al., 2011; Hubbard
et al., 2016).

Foehn is a downslope wind in the lee of a mountain that is accelerated, warmed, and dried as a result of the
orographic disturbance on the prevailing flow (Elvidge & Renfrew, 2016). It is an intrinsic feature of moun-
tain gravity waves, and can also be generated or strengthened by cross‐mountain pressure gradients driving
“gap flows” through elevated mountain passes (Elvidge et al., 2015; Mayr et al., 2007; Zängl, 2003). The
warmth of foehn, combined with the accompanying dry, cloud‐free conditions (the foehn cloud‐clearance
effect), makes it a potent agent for ice and snow melt (Cape et al., 2015; Elvidge et al., 2016; Hayashi
et al., 2005). Over Larsen C, a series of case study investigations using observations supported by relatively
high resolution simulations have demonstrated the capacity for foehn to penetrate down to the surface in
the immediate lee of the mountains and in certain cases (when the mountain flow regime is relatively linear)
to extend across the entire ice shelf (e.g., Elvidge et al., 2016, 2015; Grosvenor et al., 2014; King et al., 2008;
Turton et al., 2018). Foehn is typically channeled into the inlets, forming foehn jets, between which sheltered
regions experiencing weaker foehn winds (“wake” regions) are found (Elvidge et al., 2015). Several studies
have demonstrated that foehn enhances melt rates over Larsen C, via increased downward surface fluxes
of shortwave radiation and sensible heat (Datta et al., 2019; Elvidge et al., 2016; King et al., 2017; Kuipers
Munneke et al., 2018, 2012). Using data from satellite observations and a regional climate model, Datta
et al. (2019) have attributed enhanced late summer‐season meltwater percolation depths and snow densifi-
cation during recent years to foehn. It has also been shown that the collapse of Larsen B was coincident with
a summer of anomalously strong foehn warming (Cape et al., 2015).

Luckman et al. (2014) presented satellite observations of climatological melt distributions over Larsen C, the
key features of which are corroborated by other studies (e.g., Ashmore et al., 2017; Barrand et al., 2013;
Bevan et al., 2018; Holland et al., 2011; Tedesco, 2009). They revealed that the distribution in observed melt
broadly matches patterns in near‐surface wind speed and air temperature in case study simulations of foehn;
patterns which have also been seen in composite foehn conditions from a multidecadal model simulation
(Wiesenekker et al., 2018). More specifically, elevated melt rates in a narrow band running along the AP's
east coast at the foot of the mountains mirrors the diminishing impact of foehn on leeside temperatures with
distance downwind of the AP (Elvidge et al., 2016), while melt rate maxima in inlets are colocated with max-
ima in foehn wind speed (Elvidge et al., 2015). A broad north to south gradient in melt reflects both the
annual mean gradient in solar irradiance at the top of the atmosphere and the north‐south gradient in the
strength of the background circumpolar westerly winds which drive foehn in this region (Marshall
et al., 2006). It also corresponds with the prevailing foehn wind direction across Larsen C being broadly
northwesterly (Datta et al., 2019; Turton et al., 2018).

Given these correlations, a reasonable hypothesis is that foehn plays a governing role in climatological melt
patterns over Larsen C. However, the supporting evidence for this hypothesis is conflicted:

• In model data spanning one melt season, King et al. (2017) found that the impact of foehn on Larsen
C's surface energy budget (SEB) was generally small and that, besides enhanced melt toward the far
north of the ice shelf, the spatial pattern of foehn‐driven melt bore little resemblance to satellite
observations. However, noting the absence of foehn jets in their meteorological analysis data, they
call into question the validity of these results on account of model shortcomings, including a limited
resolution.

• Beyond the cloud‐clearance effect, the impact of foehn is governed by a balance between downward fluxes
of sensible heat (SH) due to the relative warmth of the foehn air and upward fluxes of latent heat (LH) due
to sublimation. The available evidence demonstrates significant seasonal, diurnal, and spatial variability
in this balance, meaning the net effect is not necessarily surface warming. During wintertime and
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nighttime foehn, SH has dominated across much of the ice shelf (Elvidge, 2013; Kuipers Munneke
et al., 2018). During daytime summer foehn, the two terms have either roughly canceled in inlets
(Grosvenor et al., 2014) and toward the eastern edge of Larsen C (King et al., 2017; Kuipers Munneke
et al., 2012), or LH has dominated (Elvidge, 2013). Relating this balance of SH and LH to meteorological
conditions needs clarification.

• The fact that the highest melt rates are observed within the inlets has been hypothesized to be due to the
incidence of the strongest foehn winds—foehn jets—in these inlets. However, the validity of this hypoth-
esis depends on the net turbulent surface heat flux during foehn, which, as established above, is as yet
unclear. Furthermore, this hypothesis conflicts with the observed spatial variability in foehn air tempera-
tures, which are typically lower in the jets than in wake regions due to a dampened foehn effect in the jets
(Elvidge et al., 2015; Elvidge & Renfrew, 2016). In fact, of the two studies addressing the SEB impact of
foehn jets, Elvidge (2013) found less melt in the inlets, while Grosvenor et al. (2014) found no clear influ-
ence of jets on melt rates. However, these papers only consider a small number of case studies, which are
not necessarily representative.

The goal of this study is to quantify and explain the atmospheric drivers of melt across Larsen C and conse-
quently to reconcile the above contradictions, using new, ideally located observations together with a long‐
duration, high‐resolution, state‐of‐the‐art model simulation. Section 2 provides summaries of the data and
details a novel method we have devised to investigate the problem. In section 3 we characterize the meteor-
ological conditions, SEB, andmelt at a representative inlet across three melt seasons. In section 4 we identify
distinct SEB regimes and explore their characteristics and influence during both foehn and non‐foehn con-
ditions. In section 5 we investigate the local meteorological controls on melt during foehn. Following a brief
evaluation of model performance in sections 3 and 5, in section 6 we focus on the model data to explore the
drivers of melt across the ice shelf as a whole. Section 7 summarizes and concludes the study.

2. Data and Methods

The observations in this study are from an automatic weather station (AWS) located in Cabinet Inlet
(Figure 1). These observations cover three austral summer seasons over 31 continuous months from the
AWS's installation date of 25 November 2014 to 17 June 2017, at half‐hourly resolution. The model output
is from a limited area simulation of the Met Office Unified model (MetUM), covering the domain shown
in Figure 1 from 25 November 2015 to 31 May 2016. These dates were chosen to encompass the majority
of one summer melt season; 96% of annual (July 2015 to June 2016) melt in the AWS observations

Figure 1. Map of the model domain showing the orography of the Antarctic Peninsula (gray scale is terrain height), the
majority of Larsen C and the remaining section of Larsen B (in white), and the locations of focal sites (see legend).
Note that all observations used in this study come from the Cabinet Inlet AWS site, while all four sites are used for model
data analysis. The sea is shown in light blue. The land‐sea mask and orography data used here are the same as that used
for the model simulation; see section 2.2.
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occurred during this period. In both observational and model data, foehn conditions have been diagnosed
according to a location‐dependent criterion based on wind direction and relative humidity (see Appendix A
for details and justification).

2.1. AWS Data

The AWS is jointly operated by the Institute for Marine and Atmospheric Research of Utrecht University
(UU/IMAU) and the British Antarctic Survey (BAS) and is known as IMAU AWS 18. It is located at
66°24′S, 63°22′W at a height of ~70 m above mean sea level. It has sensors for air and surface temperature,
air pressure and humidity; an acoustic snow height sensor; a propeller‐vane anemometer measuring wind
direction and speed; and a radiometer for measuring downward and upward shortwave and longwave radia-
tive fluxes. A bulk‐algorithm‐based SEB model (Kuipers Munneke et al., 2009) has been used to derive sur-
face SH and LH fluxes and the ground heat flux. The energy available for melt is also derived from this
model, given as the SEB residual when the surface temperature, Tsfc, is above freezing point:

meltSEB ¼ 0; Tsfc < 0°C

max 0; SWþ LWþ SHþ LHþ GHð Þ; Tsfc ¼ 0°C ;

�

where SW, LW, SH, LH, and GH are the net surface fluxes of, respectively, shortwave radiative heat, long-
wave radiative heat, sensible heat, latent heat, and ground heat, here given as positive when directed
toward the surface, and Tsfc is the surface temperature. Reported quantities are at nominal levels of 2 m
for temperature and humidity and 10 m for wind speed, adjusted from the raw measurements typically
made between 1.7 and 2.4 m.

Several quality checks and corrections have been applied to the AWS data. Solar radiation observations were
tilt corrected (Wang et al., 2016) and further constrained by calculating a 24‐hr running mean albedo follow-
ing Van den Broeke et al. (2004). By inspecting data from the upward‐facing longwave radiation sensor, we
found that no rime accreted on the radiation sensors at this location. Air temperature observations, per-
formed inside naturally ventilated radiation shields, were corrected downward during periods of sunny
weather with little or no wind, following the method of Smeets et al. (2018). Compared to direct eddy corre-
lation observations of turbulent fluxes (e.g., by using a 3‐Dultrasonic anemometer), the bulkmethod that we
apply to the AWS observations yields similar results; with a root‐mean‐square difference of typically
3–4Wm−2 at Antarctic sites experiencing frequent air flow (e.g., Van den Broeke et al., 2005). With the wind
sensor being at a height of 2–3 m, the bulk method captures most of the turbulent eddies, and does not
severely violate the assumption of constant flux in the layer between the surface and the instrument height.

2.2. Model Data

The MetUM is a state‐of‐the‐art, nonhydrostatic atmospheric model used by the Met Office for operational
weather forecasting and as a component in all their climate models (Walters et al., 2019). Here, we have used
Version 10.6 of the MetUM and a standard parameterization configuration (generally following Tang
et al., 2013). This configuration has proven reasonably accurate at simulating cases of orographic flows over
Antarctica (e.g., Elvidge & Renfrew, 2016; Elvidge et al., 2016, 2015; Orr et al., 2014). Instead of the model
defaults, the land‐sea mask was derived from the SCAR Antarctic Digital Database coastline, Version 7.0
(released January 2016 and available at https://www.add.scar.org/), and the orography was derived from
the high‐resolution Radarsat Antarctic Mapping Project (RAMP; Liu et al., 2015) digital elevation model.

The limited area model simulation has a horizontal grid spacing of 1.5 km and 70 vertical levels (the lowest
of which is at a height of 2.5 m over the ocean and there are 16 levels in the lowest km). This resolution is the
same as or higher than those used for previous model studies of individual foehn events over Larsen C
(e.g., Elvidge et al., 2016, 2015; Grosvenor et al., 2014; Turton et al., 2017) and is significantly higher
than those used for previous model climatologies spanning one or more melt seasons (e.g., Datta
et al., 2019; King et al., 2017). Note that this model does not incorporate a multilayer snow scheme.
Consequently, a best estimate of melt in the model is provided by meltskin, the residual energy available
for surface melt, following King et al. (2008) and Kuipers Munneke et al. (2012) in assuming that
ground heat flux contributions are negligible:
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meltskin ¼ 0; Tsfc < 0°C

max 0; SWþ LWþ SHþ LHð Þ; Tsfc ¼ 0°C

�
:

In our analysis of the model data, four sites of focus are chosen (see Figure 1 for locations):

• The Cabinet Inlet IMAU AWS18 site, 66°24′S, 63°22′W
• Whirlwind Inlet, 67°27' S, 65°18' W—situated in another foehn‐prone Larsen C inlet.
• Mamelon Point, 67°14′S, 64°42′W—situated between Whirlwind Inlet to the south and Mill Inlet to the

north in a region known to typically experience wake conditions during foehn (Elvidge et al., 2015).
• Larsen East, 67°01′S, 61°29′W—situated toward the eastern edge of Larsen C, approximately 150 km east

of the AP, and the site of IMAU AWS14, data from which have been used in several previous studies
(e.g., Elvidge, 2013; King et al., 2015; Kuipers Munneke et al., 2012; Turton et al., 2018; Van den
Broeke, 2005).

2.3. SEB Regimes

Determining the atmospheric drivers of melt over climatological timescales is complicated by nonlinear
interactions and feedbacks between SEB components and meteorological conditions. To overcome this chal-
lenge, we have categorized the SEB into distinct regimes determined by which SEB component is dominat-
ing and in which direction. An SEB component is said to dominate when it is contributing a heat flux which
is greater in magnitude than all of

a Each of the individual contributions of the other components
b The combined contribution of all other components
c 50 W m−2

For example, the following logical expression determines whether or not the downward SH‐dominated
regime (SEB↓SH) is occurring:

SEB↓SH ¼ occurring; SH > 50 W m2
� �

and SH > LHj jf g and SH > SWj jf g and SH > LWj jf g and SH > LHþ SWþ LWj jf g
not occurring; otherwise:

(

Equivalent expressions are used for all other possible regimes, of which there are eight in total (that is,
SEB domination by each of the four components, in each direction). Of these regimes, only four occur
in our data: SEB↓SH, SEB↑LH, SEB↓SW, SEB↑LW, where ↓ and ↑ denote downward and upward flux direc-
tions, respectively. Note that the SEB is often not dominated by any single component, but during such
conditions the net flux is typically small (92% of the time smaller than ±25 W m−2) and consequently rela-
tively little melt occurs (only 6% of total melt in the Cabinet Inlet observations and only 2% of total melt at
the four sites of focus in the model). Note that our results are not qualitatively sensitive to the value of the
fixed heat flux threshold, though we find the chosen value of 50 W m−2 to be optimal in yielding useful
results for the attribution of melt to atmospheric drivers as it strikes a balance between being sufficiently
large to ensure significant differences in SEB composition between regimes and sufficiently small to
ensure that little melt occurs when no SEB component is dominating.

3. Meteorological Conditions and Surface Energy Exchange in Cabinet Inlet

Here we investigate the seasonal variability in atmospheric conditions and the broad meteorological drivers
of melt at Cabinet Inlet.

Figure 2 shows that the two most frequent wind directions in the Cabinet Inlet observations are northwes-
terly and southerly. During melt, winds are most commonly westerly to northwesterly. Both the highest
wind speeds and the highest melt rates occur in westerly to northwesterly flow, consistent with foehn
(and sometimes katabatic winds; see Appendix A) drawn down the eastern slopes of the AP. A second
peak in wind speeds is found in southerly wind directions, consistent with cold, southerly barrier flows
along the east coast of the AP (see Parish, 1983; Schwerdtfeger, 1975). Modeled wind and melt
distributions are qualitatively similar to the observations, although the model underestimates winds
and melt in the westerly sector.
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Statistics andmonthly variability in foehn andmelt occurrence andmelt rates from all AWS observations are
presented in Figures 3a and 3b and Table 1. At Cabinet Inlet, foehn occurs 15% of the time and is responsible
for 45% of the melt (Table 1). The potency of foehn in causing melt reflects both elevated melt occurrence
(3 times more common) and elevated rates of melt when melt is occurring (1.4 times greater) during
foehn than non‐foehn conditions (note these differences are statistically significant at the 99% level).
While foehn occurs all year round at Cabinet Inlet (Figure 3), our observations corroborate previous stu-
dies (e.g., Datta et al., 2019; King et al., 2017; Turton et al., 2018; Wiesenekker et al., 2018) in showing it
to be least common during the summer (4% of the time in December) and most common in midspring
(peaking at 32% in October) and autumn (20% in May). Foehn explains 88% of total melt occurring outside
of the summer months (December–February, DJF), of which 98% occurs during the spring (September–
November, SON) and autumn (March–May, MAM). It is worth noting that the strong influence of foehn

Figure 2. Rose charts summarizing the distributions of wind speed, wind direction, and melt at Cabinet Inlet. (a, c, and e) Wind roses, with colors denoting the
distribution of wind speeds (m s−1) and bold numbers giving the mean wind speed for each segment. (b, d, and f) “Melt roses” showing melt for each wind
direction segment as a percentage of total melt, the distribution of melt rates (color), and mean melt rates (numbers in bold; W m−2). The data used are (a, b) all
available AWS observations, (c, d) the AWS observations between 25 November 2015 and 31 May 2016 (the period of the model simulation), and (e, f) the
model simulation. Note that meltSEB is used for panel (b) and meltskin is used for panels (d) and (f), and only values of meltSEB and meltskin greater than 1 Wm−2

are included.

10.1029/2020JD032463Journal of Geophysical Research: Atmospheres

ELVIDGE ET AL. 6 of 25



during the spring is also likely to play an important role in preconditioning the ice shelf for summertime
melt via reduced albedo due to the warming, coarsening and melting of the top layers of snow (e.g.,
Kuipers Munneke et al., 2014). During foehn, the SEB typically comprises a balance between heat gain
via the net turbulent heat flux (TurbH), and heat loss via the net radiative heat flux (RadH) (Figure 3c);
with the mean turbulent term greater in magnitude than the mean radiative term during all months
except December. The foehn SEB is most strongly dominated by TurbH during March, coinciding with
the highest mean melt rates during foehn. Interestingly, there is no evidence for the foehn
cloud‐clearance effect in the Cabinet Inlet observations; the average proportion of solar irradiance at the
top of the atmosphere reaching the surface (SWSfc/SWTOA)—a proxy for cloud cover—is similar under
foehn conditions to that under non‐foehn conditions (see Table 1).

Roughly half of annual melt at Cabinet Inlet occurs during the summer months (DJF), 88% of which is dur-
ing non‐foehn conditions. The non‐foehn monthly mean SEB comprises a balance between downward
RadH and upward TurbH (Figure 3d).

For the single melt season covered by the simulation, the observed monthly variability in foehn occurrence,
melt, and SEB components (Figure 4a) are generally consistent with those described above for the

Figure 3. Monthly mean time series of all available AWS observations at the Cabinet Inlet site (November 2014 to June
2017), showing (a) monthly foehn and meltSEB occurrence (as a percentage of time), (b) monthly accumulation of melt
during both foehn and non‐foehn conditions, and (c, d) monthly mean meltSEB and net downward radiative and
turbulent surface heat fluxes during (c) foehn and (d) non‐foehn conditions, with standard deviations in these fluxes
indicated by shading.

10.1029/2020JD032463Journal of Geophysical Research: Atmospheres

ELVIDGE ET AL. 7 of 25



three‐season mean. During this single season, the differences between meltSEB and meltskin in the observations
(Figure 4a) are generally negligible relative to the differences in observed meltskin and simulated meltskin
(Figures 4a and 4d). This suggests that the omission of ground heat flux in the model is a relatively minor
source of model error. Recall the penetration and absorption of SW below the surface of the snowpack is
accounted for in meltSEB but not in meltskin (Kuipers Munneke et al., 2012).

The model generally performs well. Figures 4a and 4d show that the monthly occurrence of foehn is accu-
rately reproduced; the bias never greater than ±7% and the difference during the entire melt season being
only 1% (Table 1). Monthly melt occurrences during all (foehn and non‐foehn) conditions are also generally
handled well (though with notable biases in December and May), with a melt‐season difference also of only
1%. Monthly mean variability in the SEB contributions from TurbH and RadH are qualitatively well repre-
sented; The seasonal timings of peaks and troughs are generally accurate, as are the key differences in these
fluxes between foehn and non‐foehn conditions (Figures 4b, 4c, 4e, and 4f). Despite a consistent positive bias
during foehn, TurbH is also generally quantitatively accurate. During foehn conditions, the monthly bias in
TurbH is less than 20 Wm−2 for all months except January, while during non‐foehn conditions the monthly
bias is always <5 W m−2.

In RadH, however, the model exhibits significant biases. During DJF there is typically a positive model bias
in mean downward SW and consequently RadH, leading to exaggerated monthly melt rates during both
foehn and non‐foehn conditions (Figures 4b, 4c, 4e, and 4f). This overestimation is most significant for
non‐foehn conditions, with the total accumulation of melt during the 2015–2016 melt season being 150%
of that observed. The overestimation is smaller in the accumulation of foehn‐driven melt (the simulated
value being 126% of the observed value), reflecting less dependence on RadH during foehn. Note that signif-
icant model biases in RadH over Larsen C have been found in previous studies (e.g., Gilbert et al., 2020;
Grosvenor et al., 2014; King et al., 2015; Kirchgaessner et al., 2019). Unlike in the observations, there is evi-
dence for the cloud‐clearance effect in the model, with SWSfc/SWTOA being significantly greater during
foehn than during non‐foehn conditions (Table 1). This will account for a portion of the model bias in
RadH during foehn conditions (N.b. the size of this portion cannot easily be ascertained, and further discus-
sion on the sources of model error is beyond the scope of this study).

Table 1
Foehn, melt and solar radiation statistics at the focal sites on Larsen C

25 Nov.
2014 to 17
June 2017

25 November 2015 to 1 June 2016

Obs, CI
Obs,
CI

Model,
CI

Model,
WI

Model,
MP

Model,
LE

Foehn occurrence (% of time) 15 18 17 26 9 9
Melt occurrence (% of time) 8 13 14 15 10 14
Melt occurrence during foehn (% of time) 20 35 29 23 16 20
Melt occurrence during non‐foehn (% of time) 6 8 11 12 10 13
Mean melt rate during foehn melt (W m−2) 61 62 102 99 77 73
Mean melt rate during non‐foehn melt (W m−2) 43 45 62 54 59 63
Accumulation of foehn‐driven melt (mm w.e.) 446 195 245 290 54 63
Accumulation of non‐foehn‐driven melt (mm w.e.) 539 150 287 231 257 368
Median SWSfc/SWTOA during foehn 0.50 0.54 0.64 0.67 0.74 0.67
Median SWSfc/SWTOA during non‐foehn 0.52 0.52 0.58 0.56 0.58 0.63

Note. Data are derived from observations (“Obs”) and the model for the Cabinet Inlet (CI) site, and from the model for
the Whirlwind Inlet (WI), Mamelon Point (MP), and Larsen East (LE) sites. All statistics are given for the entire period
covered by the simulation (25 November 2015 to 1 June 2016), and those for the observations are additionally given for
the entire observation period (25 November 2014 to 17 June 2017). “Melt” is given as meltSEB in the column for 25
November 2014 to 17 June 2017, and as meltskin in the column for 25 November 2015 to 1 June 2016. Top of
atmosphere solar irradiance (SWTOA) is model‐derived. The differences in SWSfc/SWTOA between foehn and
non‐foehn conditions are significant at the 99 % level according to the Mann‐Whitney U test (in all cases but
the Cabinet Inlet observations, where the difference is small, and the Larsen East model data, which are limited
by the foehn sample size).
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4. SEB Regimes in Cabinet Inlet

We categorize the ice shelf SEB observed in Cabinet Inlet into regimes according to which component is
dominating, as described in section 2.3. We explore the sensitivity of SEB regime occurrence to meteorologi-
cal conditions and the sensitivity of surface temperature and melt to the SEB regime. Figure 5 shows the pre-
valence of each SEB regime and their contributions to mean and cumulative (i.e., time‐integrated) surface
energy exchange and melt, for all available Cabinet Inlet observations.

During foehn conditions (Figures 5a and 5b), the SEB is typically positive (surface heating) and is commonly
(62% of the time) dominated by a single component, with typically greater flux contributions by individual

Figure 4. Monthly mean time series between December 2015 and May 2016 for the Cabinet Inlet site (CI) of (a–c) observed and (d–f) modeled (a, d) monthly
foehn and meltSEB occurrence (as a percentage of time; left axis) and monthly accumulation of melt during both foehn and non‐foehn conditions (right axis)
and (b–c, e–f) monthly mean melt and net downward radiative and turbulent surface heat fluxes during foehn and non‐foehn conditions, with standard deviations
in these fluxes indicated by shading. Melt is given as meltSEB for solid bar borders in (a, d), and as meltskin for dotted bar borders in (a) and (d) and dotted black
lines in (b) and (c), and (e) and (f).
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SEB components than during non‐foehn conditions. The SEB↓SH regime is most common and is responsible
for most cumulative surface warming and melt (76%). Nonetheless, significant contributions to melt during
foehn are driven by solar radiation in the SEB↓SW regime (19% of the cumulative total), despite this regime
only occurring 6% of the time during foehn. The strong surface heating and melting seen in this regime is
largely due to the SW fluxes being commonly supported by smaller but significant downward SH fluxes.
During both the SEB↓SH and SEB↓SW regimes, smaller upward fluxes in LW and LH tend to partially
offset the downward fluxes. The second most common SEB regime during foehn is SEB↑LW, in which
upward LW fluxes—partially offset by downward SW fluxes—lead to net surface cooling. Very rarely
(<1% of the time) the SEB↑LH regime occurs. This is when sublimation is the dominant energy exchange
process and is characterized by significant flux contributions from all the SEB components, leading on
average to weak surface cooling.

During non‐foehn conditions (Figures 5c and 5d), for the majority (83%) of time, no single component dom-
inates the SEB, the net SEB is typically close to 0 and, overall, imparts a weak net cooling effect, which
amounts to a significant cumulative surface cooling over the course of the full observational record. For
the remainder of the time, the radiative flux components tend to dominate; with the SEB↓SW and SEB↑LW

regimes occurring 11% and 6% of the time, respectively. During SEB↓SW, downward SW fluxes—typically
partially offset by weaker upward LW fluxes—contribute a significant net surface warming effect and the
vast majority (>90%) of melt occurring during non‐foehn conditions. Conversely, during SEB↑LW, upward
LW fluxes—typically partially offset by weaker downward SW fluxes—contribute a net surface cooling effect
and no melt.

Figure 5. Prevalence and contributions to the SEB and melt for each SEB regime during foehn and non‐foehn
conditions, from all available Cabinet Inlet AWS observations (November 2014 to June 2017). In (a) and (c), black
bars give the percentage of time during which each regime occurs (left axis), while brown and orange bars give
cumulative (i.e., time‐integrated) contributions to net downward heat transfer and meltSEB, respectively (right axis). In
(b) and (d), black, solid horizontal lines denote the mean net heat flux, black dotted lines denote the mean energy
available for melt, and box and whiskers show the median, interquartile range and 9th and 91st percentiles of each SEB
component. The SEB regime “none” denotes where no single SEB component dominates (see section 2.3). Note that
SEB↑LH never occurs during non‐foehn conditions.
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It is notable that during non‐foehn conditions nearly all melt occurs in a radiative dominated regime
(SEB↓SW), while during foehn conditions significant melt occurs during both radiative (SEB↓SW) and
turbulent (SEB↓SH) dominated regimes. As a consequence, the relationship between meteorological
conditions and melt is more complex during foehn conditions. As outlined in section 1, this complexity is
evident in the diversity of results from previous studies on foehn melt signatures, especially those of
foehn‐jet‐prone inlets as distinct from those of neighboring wake regions. In the next section we investigate
this further, aiming to clarify uncertainty in the sensitivity of foehn‐driven surface warming and melt to
meteorological conditions.

5. Meteorological Controls on Melt During Foehn in Larsen C Inlets

It has been shown in sections 3 and 4 that the foehn SEB at Cabinet Inlet is typically dominated by SH, which
in turn is governed by wind speed and the air‐surface temperature gradient. On this basis, we now test the
following hypothesis:

During foehn over Larsen C, variability in the SEB and melt depends principally on foehn wind speed and the
temperature of the incoming foehn air relative to that of the ice surface.

Figure 6 shows the sensitivity of the SEB components and melt to wind speed for both the observational and
model data. The analysis is split into two subsets using static stability (expressed as the square of the Brunt‐
Väisälä frequency, N) between the surface and 2 m for the observations and between the surface and 1.5 m
for the model. These subsets represent (i) typical stably stratified foehn conditions and (ii) rare weakly strati-
fied foehn conditions. The static stability threshold used to divide the data into these subsets is chosen to be
the approximate value of N2 at which the largest contributor to surface heating transitions between SW and
SH (this value is determined by averaging the fluxes acrossN2 bins of interval 0.01 s−1). This is, for the obser-
vations and model respectively, 0.05 (the 5th percentile in N2; that is, only 5% of foehn occurring is weakly
stratified) and 0.07 s−1 (the 16th percentile in N2).

In the stably stratified foehn subset of the Cabinet Inlet observations, TurbH generally dominates over RadH;
SH‐driven surface heating characterizes conditions in all but the weakest winds (<3 m s−1), in which
LW‐driven surface cooling generally prevails (Figure 6a; though note that for simplicity the radiative heat
fluxes are combined in Figure 6). As winds strengthen, SH increasingly dominates the SEB, leading to
increasing surface heating and melting. Conversely, in the weakly stratified foehn subset, generally down-
ward SH is canceled by upward LH, and RadH dominates over TurbH, with SW‐driven surface heating typi-
fying the SEB when wind speeds are <12 m s−1 (Figure 6b). As winds strengthen, the influence of LH
increases, leading to a decrease in net heating and melting, and culminating in an approximate balance in
SEB components above 12 m s−1. The SEB sensitivities to wind speed and static stability observed at
Cabinet Inlet are generally well represented by the model (Figures 6c and 6d). Furthermore, these sensitiv-
ities are very similar at Whirlwind Inlet (Figures 6e and 6f)—which implies they are likely to apply to all
Larsen C inlets during foehn. Note that weakly stratified foehn at Cabinet Inlet is three times more likely
in the model than the observations. This reflects the positive model bias in SW leading to weaker summer-
time static stabilities (see section 3).

Physical explanations for the relationships between SEB and foehn conditions are now discussed with
the aid of the schematics shown in Figure 7. In typical foehn conditions over Larsen C, warm air passes
over cold ice (the maximum temperature of which is limited by the melting point). In moderate to
strong winds this results in SH‐driven net surface warming and melt (Figure 7a). In weak winds the
surface becomes largely decoupled from the warm foehn and LW‐driven net cooling prevails
(Figure 7b). In cases where the foehn air is cooler than usual and/or is flowing over radiatively warmed
ice, the temperature gradient will be too small for SH to dominate, no matter what the wind speed.
Instead, the role of SH becomes reactive, varying such as to minimize changes in surface temperature
relative to air temperature. And it becomes more effective in this role as the wind speed and
wind‐induced turbulence increases, until the net SEB is reduced to near‐zero (Figures 6b, 6d, and 6f),
often with large flux contributions from all SEB components (Figure 7c). During foehn characterized
by weak winds and weak‐stratification, SW‐driven net surface warming and melt prevails and helps
to maintain the low static stabilities (Figure 7d).
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The hypothesis proposed at the start of this section has been proven. The nonlinear relationship
between net SEB and foehn conditions can be explained by differences in wind speed, the influence
of which is modulated by the warmth of incoming foehn relative to the ice surface, via TurbH. These
wind speed sensitivities largely explain the SEB differences between foehn‐jet‐prone inlets and adjacent
wake regions. Other notable meteorological factors contributing to these SEB differences include the
likelihood of more frequent and persistent foehn in inlets than in wake regions due to the funneling
effect of local orography, and jet‐wake differences in temperature and humidity (jet air typically being
cooler and moister; Elvidge et al., 2015). The likely climatological effect of the former is enhanced
foehn‐driven melt in inlets relative to wake regions, while that of the latter is reduced foehn‐driven melt
in inlets relative to wake regions.

Figure 6. Surface energy components as a function of wind speed for stably stratified foehn conditions (top) and weakly stratified foehn conditions (bottom) during
(a, c, and e) stably stratified foehn and (b, d, and f) weakly stratified foehn, from (a, b) all Cabinet Inlet observations, (c, d) all Cabinet Inlet model data, and (e, f) all
Whirlwind Inlet model data. Data are binned according to wind speed. The number of data points in each wind speed bin is denoted by the size of the plot markers
and also given toward the top of each panel as a percentage of the total number of data points in each panel, which is itself stated at the bottom of each panel. Melt
is given as MeltSEB in (a) and (b) and as Meltskin in (c)–(f).
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If we consider the high‐resolution model simulation of summertime foehn (“Case A”) presented in
Elvidge (2013) and also studied in Elvidge et al. (2016, 2015), surface temperatures in the inlets were, relative
to the rest of the foehn‐effected ice shelf, high during the night and low during the day. Melt only occurred
during the daytime, and melt minima were found in the inlets. This particular event was characterized by
relatively low near‐surface foehn air temperatures (typically 1–2°C in inlets; corresponding to the 2nd to
5th percentiles of foehn air temperatures during melt in our observations). Consequently, during the day-
time weakly stratified foehn prevailed (cf. Figure 7d), characterized by SW‐driven surface warming and melt
that was lower beneath the jets than elsewhere. During the nighttime, stably stratified foehn prevailed, with
more surface warming beneath the jets than elsewhere, but with foehn air temperatures insufficiently high
to cause melting. In addition to the diurnal effect on surface static stabilities, foehn jet air temperatures were
lower (by 3–4 K) than the air temperatures in adjacent wakes. Consequently, all else being equal, the jet SEB
was more likely than the wake SEB to fall into the weakly stratified foehn state. In contrast, the foehn case
studied by Kuipers Munneke et al. (2018) was characterized by near‐surface air temperatures in excess of
10°C (the 95th percentile in our observations) and significant melt in the Larsen C inlets. Clearly this was
a case of stably stratified foehn (cf. Figure 7a) and would have remained so even in the presence of strong
solar forcing.

The high sensitivity of the net SEB during foehn to wind speed and static stability may also help to explain
why the model climatology of King et al. (2017) was unable to reproduce observed Larsen C melt distribu-
tions. Little evidence of foehn jets was found in their model wind speed data, and the model they used
(the Antarctic Mesoscale Prediction System) is known to struggle in representing the relationship between
wind speed and static stability over an ice shelf (Wille et al., 2016). Further discussion on the challenges
of model representation of the Larsen C SEB is presented in section 7.

Figure 7. Schematics representing foehn SEB sensitivity to wind speed during (a, b) typical, stably stratified foehn conditions and (c, d) weakly stratified foehn
conditions. The black arrows denote the foehn winds in the lower atmosphere (white to red shades; darker reds denoting warmer air) descending the eastern
slopes of the AP and then advancing across the ice shelf (light blue), with thicker arrows denoting stronger winds. The colored arrows denote heat fluxes, with
their widths and label font sizes proportional to the absolute, mean observed values at Cabinet Inlet. These values range in magnitude from 0.5 W m−2 (for LH in
weak‐wind stably stratified foehn conditions) and 113 W m−2 (for SH in strong‐wind stably stratified foehn conditions). The SEB net effect(s) of each foehn
classification on the ice shelf are described below each panel, and the occurrence of significant melt is also denoted by dark blue shading at the top of the ice shelf
in panels (a) and (d). Mean melt rates are, for (a), (b), (c) and (d) respectively, 22, 4, 2 and 16 W m−2. Foehn classifications are defined using the same Brunt‐
Väisälä frequency threshold as used for Figure 6 (the 5th percentile) to distinguish between stably stratified foehn and weakly stratified foehn, and the 25th and 75th
wind speed percentiles (4.5 and 11.6 m s−1, respectively) to distinguish between strong‐wind foehn and weak‐wind foehn.
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6. Drivers of Melt Across Larsen C

In this section, our investigation of the drivers of melt is extended to the entire ice shelf, usingmodel data, for
the 2015/2016 melt season. Sections 3 and 5 provide evidence that the model is sufficiently accurate for this:
it is quantitatively representative in terms of meteorology (Figure 2) and qualitatively representative in terms
of SEB and melt (Figures 2 and 4) and how these relate to meteorological conditions (Figure 6). This model
has also performed realistically in several previous studies (e.g., Elvidge et al., 2016, 2015; Orr et al., 2014).
However, a significant and consistent overestimate in summertime radiatively driven surface warming
and melt should be taken into consideration.

Figures 8, 9 and 10 show model composite plots of key fields during widespread foehn and widespread non‐
foehn conditions across Larsen C. Here, widespread foehn is diagnosed when foehn is detected in the model
(according to the criteria described in Appendix A) at both the Cabinet Inlet and Whirlwind Inlet sites.
Likewise, widespread non‐foehn conditions are diagnosed when foehn is occurring at neither of these sites
in the model, while limited foehn conditions are diagnosed when foehn is detected at one inlet site but not
the other. Widespread foehn is found to occur 12% of the time and is coincident with 20% of total Larsen C
melt, while widespread non‐foehn occurs 70% of the time and is coincident with 58% of the melt. This leaves
limited foehn occurring 18% of the time and accounting for 22% of the melt. For simplicity, the limited foehn
state is largely disregarded in this analysis and not shown in the figures. Note that while spatial plots of com-
posite mean meteorological and surface conditions are provided for foehn conditions in Figure 8, equivalent

Figure 8. Model composite spatial plots during widespread foehn conditions (which occur 12% of the time) across the Antarctic Peninsula for the 2015/2016 melt
season. In each panel, the field plotted is given by the title; note here that “MSLP” stands for “mean sea level pressure,” “sfc” stands for “surface” and “stdev”
stands for “standard deviation.” Orography contours are also plotted in gray scale (c.f. Figure 1). In (a), four inlets are labeled (CI: Cabinet Inlet; WI: Whirlwind
Inlet; MI: Mill Inlet; fLB: former Larsen B embayment), while the locations of the four data sites are shown in the other panels (open black circles; see Figure 1 for
site names). The dashed line linking solid black circles marks the transect used for the Figure 9 cross sections. Note that in panels (c)–(f) a smaller domain at larger
scale is presented, and data are only shown to the east of the AP. In all panels, data are masked out where terrain height exceeds 100 m in all panels and also west
of the AP in panels (c)–(f).

10.1029/2020JD032463Journal of Geophysical Research: Atmospheres

ELVIDGE ET AL. 14 of 25



plots are not shown for non‐foehn conditions. This is due to non‐foehn conditions being characterised by
considerably greater variability in meteorology (limiting the usefulness of mean values) and much smaller
spatial gradients in key variables across Larsen C.

Widespread foehn conditions are characterized in the composite mean by large‐scale geostrophically forced
westerly to northwesterly flow approaching and crossing the AP (Figures 8a and 8b). There is a clear foehn
signature in the leeside response to these winds. In the immediate lee of the AP, a plunging flow signature is
apparent in a cross section of composite mean wind vectors, associated with large cross‐peninsula gradients
in pressure, temperature, and humidity. Further downwind across the ice shelf, rising isentropes and specific
humidity contours reflect the diminishing influence of foehn with distance downwind of the mountains
(Figures 9a and 9b). Elvidge et al. (2016) demonstrated using case studies that the gradient of this diminish-
ing influence depends on the linearity of the mountain flow regime in which the foehn is embedded. In very
“nonlinear” cases, the impact of foehn on the leeside atmospheric boundary layer and ice shelf is confined to
the foot of the mountains, while in the paths of jets in more “linear” cases the impact of foehn extends undi-
minished across the full width of the ice shelf (once the foehn is fully established in the boundary layer).
Note that, with the foehn classification employed here, the distinction between these regimes is lost.

During widespread foehn, climatological foehn jets are apparent to the east of the AP, emerging from the
mouths of major inlets (Figure 8b), as first observed and explained via case studies in Elvidge et al. (2015).
The largest and strongest jet signatures are seen within and downwind of Cabinet Inlet and Whirlwind
Inlet, while weaker jet signatures are seen within and downwind of Mill Inlet and the former Larsen B
embayment. Everywhere across Larsen C, mean TurbH is downward and dominates over mean upward
RadH (Figures 8c and 8d). The jet signatures correspond with the greatest TurbH fluxes and,
consequently, the highest mean surface temperatures (Figure 8e). The standard deviation of surface
temperature is smallest beneath the jets (Figure 8f), reflecting dampened (radiatively driven) diurnal
and seasonal variability in surface temperature, due to a greater regulating influence of TurbH on surface
temperature in these jet regions.

Figure 9. Model composite mean cross sections of (a, c) potential temperature (contours and shading) and winds vectors (arrows) and (b, d) specific humidity (q;
shading) and relative humidity (RH; black contours) for (a, b) widespread foehn conditions (which occur 12% of the time) and (c, d) widespread non‐foehn con-
ditions (which occur 70% of the time) across the AP along the transect shown in Figure 8, for the 2015/2016 melt season. In these plots the vertical scale is
exaggerated by a factor of 100 relative to the horizontal scale. The wind vectors are true to the aspect ratio used and the reference vectors (above plots) indicate
10 m s−1 horizontal winds and 0.1 m s−1 vertical winds. The red circle is the location of the Cabinet Inlet site.
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Figure 10. Model composite spatial plots during (a–c) widespread foehn (which occurs 12% of the time), (d–f) widespread non‐foehn (which occurs 70% of the
time), and (g–i) all conditions, for the 2015/2016 melt season. The fields shown are (a, d) mean meltskin, (g) accumulation of meltskin, (b, e, and h) the
proportion of meltskin (or melt↓SH + melt↓SW) that occurs in the SEB↓SH regime (i.e. that is melt↓SH), and (c, f, and i) the proportion of top of atmosphere
solar irradiance reaching the surface (SWSfc/SWTOA). Also shown, subset in (d), are mean melt rates during widespread non‐foehn along the transect marked
by the dashed line. Note that (a) and (d) use the color scale shown to the left of the plots. In each panel the locations of the four data sites are shown
(open black circles; see Figure 1 for site names).
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During widespread foehn, mean melt rates are relatively high and spatially variable across Larsen C
(Figure 10a). The total ice‐shelf‐wide melt contributions by SEB↓SH (melt↓SH) and SEB↓SW (melt↓SW) are
similar (50% each), though the spatial variability is almost entirely due to variability in melt↓SH (see
Figures 10a and 10b). Mean rates of melt↓SH and consequently total melt broadly decline in a southeasterly
direction, reflecting themean northwesterly direction of foehn. This pattern also reflects the Cabinet Inlet jet
being associated with the greatest andmost widespreadmean warming (consistent with the north‐south gra-
dient in the strength of the background circumpolar westerly winds; Marshall et al., 2006). The highest mean
melt rates are found in the vicinity of the climatological foehn jets emerging from Cabinet Inlet, Whirlwind
Inlet, andMill Inlet, peaking at 66Wm−2 in the upper reaches of Cabinet Inlet. Themajority of melt in these
regions is due to SEB↓SH. The lowest melt rates are found at the eastern edge of the ice shelf, at the far south
of the model domain (where an ice‐shelf‐wide minimum of 2 W m−2 is found), and within a strip of ice
extending from Mamelon Point eastward. The majority of melt in these regions is due to SEB↓SW.
Radiative contributions to melt during widespread foehn are enhanced via the cloud‐clearance effect, which
is evident across the entire ice shelf in terms of SWSfc/SWTOA (cf. Figures 10c and 10f). Note that cloud cover
is greatest in the upper reaches of Cabinet Inlet, consistent with leeside conditions being moistest in jets dur-
ing foehn due to a dampened foehn drying effect here (see Elvidge et al., 2015). The lack of any foehn
cloud‐clearance seen in the Cabinet Inlet observations together with the model overestimate in SW here sug-
gests the model underestimates the moisture in jets. It is interesting that, in contrast to SH (and melt↓SH; see
Figures 10a and 10b), SWSfc/SWTOA (andmelt↓SW; not shown) does not diminish with distance downwind of
the AP during foehn. This demonstrates that in the model the impact of foehn on the ice shelf extends
beyond the reach of low‐level foehn winds, due to cloud‐clearance aloft.

During widespread non‐foehn conditions, on average, cross‐peninsula gradients in mean sea level pressure
(MSLP) (not shown), temperature (Figure 9c) and relative humidity (Figure 9d) are the reverse of that during
widespread foehn, and MSLP gradients and wind speeds are considerably weaker across the region. Over
Larsen C, composite mean temperatures and specific humidities are considerably lower (by 7–12°C and
~0.6 g kg−1, respectively) than during widespread foehn, while relative humidities are considerably higher
(by 20–50%). This reflects the cool, southerly, continentally sourced air masses typical of non‐foehn condi-
tions, versus the warm, maritime character of the air masses which arrive from the west side of the AP to
force foehn.

Melt during widespread non‐foehn conditions occurs at much lower mean rates, is much less spatially vari-
able than during widespread foehn (cf. Figures 10d and 10a) and is almost entirely (96%) due to melt↓SW
(Figure 10e). There is a weak northeast‐southwest gradient in melt, with a maximum value of 11 W m−2

in the far northeast and a minimum value of 4 W m−2 in the far southwest (see inset transect in
Figure 10d). This gradient reflects that of melt↓SW, which itself results from—in roughly equal
contributions—latitudinal variability in incoming solar radiation and variability in cloud cover (indicated
by SWSfc/SWTOA; Figure 10f); see Appendix B. Although non‐foehn winds most commonly have a southerly
component, mean melt rates generally vary little with wind direction (not shown).

In total, much of the spatial variability in melt across Larsen C simulated during the 2015/2016 melt season
is due to melt↓SH, governed by foehn. This is evident in the resemblance of the distribution of accumulated
melt shown in Figure 10g with that in Figure 10a. Even so, the northeast‐southwest gradient in melt seen
during widespread non‐foehn does—despite its weak signal in the mean—significantly impact the distribu-
tion of accumulated melt. SEB↓SW contributes more melt than SEB↓SH over the vast majority of the ice shelf
and in total 79% of melt across Larsen C. This is due first to the predominance of non‐foehn conditions, dur-
ing which nearly all melt is driven by SEB↓SW, and second to the fact that, away from the inlets, SEB↓SW also
contributes significantly to melt during foehn conditions. In fact, as seen in the observations (see Figure 5b),
the highest mean melt rates of any SEB regime are seen in SEB↓SW during foehn; owing to secondary con-
tributions by SH and, in the model, also due to cloud clearance.

In Figure 11, a more detailed analysis of SEB and melt characteristics is shown for Cabinet Inlet and the
three additional sites (cf. Figure 1; Table 1). At these locations, foehn is diagnosed in a site‐specific manner,
as described in Appendix A. Across all four sites melt during foehn is more likely than melt during non‐
foehn conditions and occurs at greater rates. This is especially so at the two inlet sites, where the prevalence
and relative impacts of the SEB regimes are qualitatively similar (Figures 11a–11d). At Whirlwind Inlet,

10.1029/2020JD032463Journal of Geophysical Research: Atmospheres

ELVIDGE ET AL. 17 of 25



SEB↓SH contributes slightly more melt, reflecting stronger mean foehn winds here than at Cabinet Inlet
(Figure 8b).

At Larsen East and Mamelon Point, foehn occurs less frequently, owing to these locations being, respec-
tively, ~150 km downwind of the AP and in a region known to typically experience wake conditions during
foehn. When foehn does occur at these locations, it is associated with much less surface warming and melt
(Figures 11e–11h). Both the prevalence and impact of SEB↓SH are much lower, reflecting weaker foehn
winds and, at Larsen East, lower foehn air temperatures. Of all four sites during foehn, SEB↓SH is least com-
mon and SEB↓SW most common at Mamelon Point. This is explained by its sheltered location, where foehn
flows are typically very weak (Figure 8b) and dry (not shown), as explained in Elvidge et al. (2015). These
particularly dry foehn conditions are associated with significantly higher SWSfc/SWTOA than during non‐
foehn conditions, consistent with the cloud‐clearance effect, which, of all four sites, is strongest here
(Table 1). With distance downwind of the AP, spatial variability in mean foehn wind speed generally
decreases as foehn jets broaden and weaken and wake regions disappear. This is reflected in SEB↓SH

Figure 11. Prevalence and contributions to the SEB and melt of all SEB regimes, during (left) foehn and (right) non‐
foehn conditions from the model simulation at (a, b) the Cabinet Inlet site, (c, d) the Whirlwind Inlet site, (e, f) the
Mamelon Point site, and (g, h) the Larsen East site. The black bars give the percentage of time during which each regime
occurs and uses the left axis, while the brown and orange bars give cumulative contributions to net downward heat
transfer and meltskin energy, respectively, and use the right axis. For each site the percentage of time spent and the
percentage of meltskin generated in both foehn and non‐foehn conditions are stated. The SEB regime “none” denotes
where no single SEB component dominates (see text).
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being more common at Larsen East, which experiences on average stronger foehn winds than Mamelon
Point. During non‐foehn conditions, there is comparatively little variation between the four sites in terms
of the prevalence and impact of SEB regimes, with slight variability in the degree of warming and melt
reflecting the northeast‐southwest gradient in SEB↓SW described above.

The simulated spatial melt patterns described in this section closely resemble those seen in the satellite observa-
tions of Bevan et al. (2018) for an annual period encompassing the samemelt season (2015/2016), which in turn
are typical of melt distributions observed during other recent melt seasons (e.g., Bevan et al., 2018; Luckman
et al., 2014). The north‐south gradient in satellite‐observed melt is reproduced and shown to be due to a combi-
nation of a northeast‐southwest gradient in mean melt↓SW during non‐foehn conditions and a broadly north-
west to southeast mean gradient in melt↓SH during foehn (in nonlinear mountain flow regimes and boundary
layers inwhich the foehn has yet to fully establish). Also reproduced is the observed band of generally highmelt
rates along the AP's east coast, in particular in the inlets (e.g., Figure 10g). This is demonstrated to be due to the
foehn winds here being generally stronger, resulting in greater SH‐driven melt. In the inlets, more frequent
foehn occurrence also contributes to more cumulative melt. Beyond these generally well‐captured broad‐scale
features, there are regional discrepancies. Most notably, the simulated melt deficit aroundMamelon Point rela-
tive to neighboring inlets appears to be exaggerated compared to observations (cf. Bevan et al., 2018). However,
another wake region and melt minimum in the model—between Mill Inlet and Cabinet Inlet—is consistent
with observations. Figure 12 summarizes in schematic form the key patterns in Larsen C melt discussed here
and the mechanisms which we have found to be responsible for them.

7. Discussion and Conclusions

This study has employed the first set of observations from a Larsen C inlet, in conjunction with a season‐
long, high‐resolution simulation in a state‐of‐the‐art model (the MetUM) to provide the first comprehensive
explanation of patterns in SEB and melt across Larsen C. A novel approach to classifying the SEB regime
according to the dominant SEB component has afforded a useful means of attributing variability in net
SEB and melt to atmospheric drivers.

Figure 12. Schematic illustrating the key features of melt variability across Larsen C, and the meteorological conditions
responsible for them. Note that “nonlinear” foehn refers to foehn embedded in a nonlinear mountain flow regime
(see Elvidge et al., 2016) and that while the cloud‐clearance effect is evident in the model results across the entire ice
shelf, is it not evident in the observations at Cabinet Inlet. The inlets are labeled CI, MI, and WI; Cabinet Inlet, Mill Inlet,
and Whirlwind Inlet, respectively.
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The climatological impact of foehn on the Larsen C SEB is distinct and significant, with elevated occurrences and
rates of melt, especially in inlets. During 31 months of observations at Cabinet Inlet, foehn contributes 45% of
total melt despite only occurring 15% of the time. During foehn,melt occurs 3 timesmore often and, when it does
occur, it does so at a rate greater by a factor of 1.4. Foehn melt accounts for nearly 90% of melt observed outside
the summer months (DJF), virtually all of which takes place during spring (SON; during which foehn is also
likely to play an important role in the preconditioning of the ice shelf for summertime melt) and autumn
(MAM). In the model, comparable statistics are simulated for inlets and even in regions where the net impact
of foehn is weakest (in the southeast and inwake regions). Owing to sharp gradients inmeanmelt, foehn governs
the spatial distribution in cumulative melt simulated across Larsen C for the 2015/2016 melt season.

While foehn is the more potent agent of melt, non‐foehn conditions occur much more commonly and con-
tribute more melt than foehn everywhere across Larsen C outside of the inlets. Nearly all non‐foehn‐driven
melt is due to SW during the summer months (90% occurring during DJF in the Cabinet Inlet observations).
Non‐foehn‐driven melt varies comparatively little in the mean across Larsen C. However, a subtle northeast
to southwest gradient reflects a corresponding gradient in surface solar forcing, resulting from spatial varia-
bility in both top‐of‐atmosphere solar irradiance and cloud cover; this is significant to the distribution of
total cumulative melt. The hemisphere‐ and synoptic‐scale circulation patterns governing non‐foehn driven
melt is a subject for future research.

Many previous studies, both over Larsen C (e.g., Grosvenor et al., 2014; King et al., 2017; Kuipers Munneke
et al., 2012) and elsewhere in the world (e.g. over John Evans Glacier, Canada; Boon et al., 2003; onHokkaido
Island, Japan, Hayashi et al., 2005; over the Baltic Sea, Granskog et al., 2006; and in Southern Alberta,
Canada, MacDonald et al., 2018), have found the impact of foehn on snow and ice melt to be largely
limited to elevated contributions by downward SW (due to a cancelation of SH by LH). In contrast,
our results show that the primary impact of foehn over Larsen C is elevated contributions to melt by
downward SH. This finding is consistent with the case study results of Elvidge et al. (2016) and
Kuipers Munneke et al. (2018). The majority (76% in our observations) of foehn‐driven melt occurs
when SH dominates the SEB as a result of strong, warm foehn winds passing over a much cooler ice
surface. The majority of such melt (and roughly half of total foehn‐driven melt) occurs in the absence
of solar forcing, during the night or outside the summer season. However, SW does significantly contri-
bute to foehn‐driven melt, with most of the remaining melt (19%) occurring when SW dominates the
SEB regime. During such conditions, SH typically also contributes, leading to the highest melt rates
observed at Cabinet Inlet. In the model, foehn enhancement of SW is evident across the entire ice shelf,
reflecting widespread cloud clearance. However, this enhancement is not apparent in the Cabinet Inlet
observations. The foehn cloud‐clearance effect has previously been inferred from both observations and
model output at Larsen East during the 2010/2011 summer season (King et al., 2017; Kuipers Munneke
et al., 2012), but the effect was small and not statistically significant. Further work is required to estab-
lish the significance of this effect over Larsen C more generally.

Satellite observations across Larsen C have demonstrated that the foehn‐jet‐prone inlets experience the most
cumulative melt (e.g., Bevan et al., 2018; Luckman et al., 2014). However, previous case study simulations
have been unable to reproduce this melt pattern (e.g., Elvidge, 2013; Grosvenor et al., 2014). We now know
why: the impact of foehn is critically sensitive to wind strength, the influence of which is modulated by the
warmth of incoming foehn relative to the ice surface, via the turbulent heat fluxes. Typical foehn is much
warmer than the ice and results in the highest melt rates occurring beneath the strongest foehn winds
(i.e., in the inlets), where downward SH is greatest. Less commonly, cooler foehn winds result in the highest
melt rates occurring beneath the weakest foehn winds (i.e., in wakes), where upward LH is smallest. This
more unusualweakly stratified foehn state occurs 5% of the time in the Cabinet Inlet observations and is asso-
ciated with small air‐ice temperature gradients and typically sunny conditions. It accounts for the incidence
of melt minima beneath jets in such cases as that examined by Elvidge (2013).

Another notable finding of this study is the signature of a foehn jet in simulated mean wind speed passing
over the embayment formerly occupied by the Larsen B Ice Shelf (until its collapse in 2002). This jet is asso-
ciated with elevated SH‐driven surface warming and is also seen in the multidecadal simulation data pre-
sented in Wiesenekker et al. (2018). Whether this jet exists in reality and whether it was common prior to
the collapse of Larsen B is unknown and could be a focus of future work.
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TheMetUMhas been shown to provide a quantitatively accurate representation of the occurrence of foehn and
annual melt and to provide a qualitatively accurate representation of SEB and melt variability during the
2015/2016melt season at Cabinet Inlet. Furthermore, themodeled spatial distribution of cumulativemelt across
Larsen C corresponds remarkably well with satellite observations of melt during the same melt season (see
Bevan et al., 2018), which is typical of melt distributions observed during other melt seasons. This provides con-
fidence that our model results are realistic and useful. The broad, roughly north‐south gradient in melt seen in
observations is reproduced and shown to be due to a combination of the aforementioned northeast to southwest
gradient in SW‐driven melt during non‐foehn conditions, and a northwest to southeast gradient in SH‐driven
melt in foehn conditions (due to “nonlinear” cross‐peninsula flow; Elvidge et al., 2016). Also reproduced is
the observed band of generally high melt rates along the AP's east coast, in particular in the inlets. The prior
assumption that this is due to the impact of foehn (and consequently SH‐driven melt) is confirmed. Despite
themodel's successes, there is a consistent and significant positive bias in SW, which is consistent with the find-
ings of previous studieswith the same and differentmodels (e.g., Gilbert et al., 2020; Grosvenor et al., 2014; King
et al., 2015; Kirchgaessner et al., 2019). This bias results in significant overestimates in melt during the summer
months, particularly during non‐foehn conditions, and implies deficiencies in the model's representation of
clouds and/or surface albedo (in the MetUM, largely clouds; Gilbert et al., 2020).

Our study demonstrates that the accuracy ofmodel simulations of Larsen Cmelt depends critically on the accurate
reproduction of (a) summertime incoming SW at the surface (and consequently clouds and albedo), (b) the occur-
rence, strength and warmth of foehn winds at the surface, and (c) air‐ice boundary layer coupling and conse-
quently the balance between SH and LH fluxes during foehn. These are all known to be challenging processes
for models, though in recent years there has been some notable progress. For example, it has recently been shown
that significant improvements in the representation of the supercooled liquid phase inAntarctic clouds are possible
with the adoption of a realistic double‐moment ice cloudmicrophysics scheme (Listowski & Lachlan‐Cope, 2017).
Recent developments in the dynamical cores around which atmospheric models are built have also significantly
improved the capacity of models to resolve the gravity waves and flow perturbations (of which foehn is an exam-
ple) induced bymountains (Elvidge et al., 2017). However, melt ponds—known to significantly affect the SEB and
melt on Larsen C (Buzzard et al., 2018a.b)—remain notably missing from numerical models of the cryosphere.

The degree to which Larsen C is in equilibrium with present‐day atmospheric forcing is unclear. Furthermore,
future changes in this forcing are expected. For example, the index of the SouthernAnnularMode (SAM),which
governs the strengthof the prevailingwesterlywinds across theAP, is expected to vary in accordancewith future
greenhouse gas emissions (Abram et al., 2014). Any future positive trend in the SAM index, as predicted in high
emission scenarios of the Coupled Model Intercomparison Project Phase 5 (CMIP5) projections (Zheng
et al., 2013), would likely yield a greater‐still influence of foehn on LarsenC.Changes in the atmospheric forcing
may also be instigated by changes in the cryosphere itself—for example, calving events and sea ice decline. Our
ability to predict such changes and consequently the ice shelf's future stability relies on underpinning mechan-
istic understanding of the complex interactions at the atmosphere‐cryosphere interface (such as provided by the
present study), the coverage of strategically located observational platforms in the region (such as the Cabinet
Inlet AWS), and on the capability of atmosphere‐cryosphere coupled climate models.

Appendix A: Foehn Detection
The algorithmic classification of foehn is a nontrivial matter, for which there is no established best practice
(Mayr et al., 2018). In this study, a comparatively simple approach has been adopted, based on the assump-
tion that foehn has a sufficiently distinct and temporally invariant signature at a given location to be identi-
fied in situ using simple fixed thresholds of key meteorological fields in absolute terms (i.e., not relative to
pre‐foehn or post‐foehn conditions). This assumption is supported by climatological analysis of the AWS
data (not shown) and by the findings of Turton et al. (2018), Kuipers Munneke et al. (2018), and King
et al. (2017). Accordingly, we have used only leeside near‐surface data and employ thresholds in wind direc-
tion and relative humidity, which vary on a site‐by‐site basis, according to (a) location with respect to the
upwind orography and (b) analysis of selected cases studies. For the Cabinet Inlet site (observations and
model) and the Whirlwind Inlet site (model only), foehn conditions have been defined by wind directions
being between southwesterly and northerly and the relative humidity with respect to ice (hereafter simply
“relative humidity”) being below 75%. This threshold has been chosen based on case study analysis of
AWS and model data to afford detection of the great majority of foehn cases while excluding other
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westerly flows at Cabinet Inlet, for example, barrier winds and katabatic winds (e.g., Grazioli et al., 2017).
Despite the cross‐mountain foehn drying effect, the maritime influence on circumpolar westerlies means
that foehn air over Larsen C is not necessarily comparatively dry in terms of absolute humidity. However,
the warmth of foehn air means it can typically hold much more water vapor than the typically cool air
sourced from east of the AP (including barrier winds) or the mountains (including katabatic winds).

For theMamelonPoint (model only) site, foehn is diagnosedwhen relative humidity is below75%and foehn is diag-
nosed at one or both of the two inlet sites. The rationale for this is that the foehnwake conditions known to occur at
the Mamelon Point site are typically characterized by near‐stagnant flow and recirculated foehn air (Elvidge
et al., 2015), rendering a wind direction criterion inappropriate. However, given the close proximity to the AP, the
same relative humidity criterion as used for the two inlets is appropriate. The fact that foehn occurrence in a wake
region is unlikely without foehn occurrence in nearby inlets (into which foehn is preferentially funneled; Elvidge
et al., 2015) justifies the additional condition that foehn must be occurring in at least one of the two inlet sites.

For the Larsen East (model only) site, the detection criterion has been designed to account for its distance
from the AP. Here, foehn is diagnosed when relative humidity is below 80% and either of the following
two conditions is met:

1. Wind direction at Larsen East is between westerly and north‐northwesterly, and foehn is diagnosed at
Cabinet Inlet;

2. Wind direction at Larsen East is between west‐southwesterly and westerly, and foehn is diagnosed at
Whirlwind Inlet.

The relative humidity threshold of 80% has been inferred from the model data, being an estimate of the aver-
age relative humidity of air arriving at Larsen East from one of the inlets having had a relative humidity of
75% in the inlet.

Appendix B: Figure B1 shows that the latitudinal gradient in SWTOA and spatial variability in cloud
cover are roughly equally responsible for the spatial variability in accumulative melt↓sfc across Larsen C
during non‐foehn conditions.

Data Availability Statement

The AWS19 observational data used in this study is available in Bevan et al. (2020). The model data were
derived from a Met Office Unified Model simulation carried out on the Joint Weather and Climate

Figure B1. (a) The accumulation of melt in the SEB↓SW regime (melt↓SW), and (b,c) contributions to the downward component of SW at the surface (SWSfc) by
(b) top of atmosphere solar irradiance (SWTOA) and (c) blocking of SW by clouds (expressed here as SWSfc − SWTOA; smaller negative values indicating clearer
conditions), all during non‐foehn conditions. Note that the color scales used for panels (b) and (c) cover an identical range of values, facilitating direct
comparisons of the gradients in these fields.
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Research Programme (Met Office and NERC) MONSooN computing system. These data require a large tape
storage facility and have been archived through the Met Office mass storage system, accessible through the
STFC‐CEDA platform JASMIN (Lawrence et al., 2013).
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