¢

The Pennsylvania State University

Computer Science Department
University Park, PA 16802

Technical Report No. 207
September 1976

HAVING A GRUMNDY-NUMBERING IS NP-COMPLETE

Jan van Leeuwen



Abstract

An assignment of integers to the vertices of a (directed) graph is
a Grundy-numbering if and only if at each node x the number assigned
to x 1is the smallest nonnegative integer not assigned to any of its
neighbors. We show that the computational problem of testing a graph for
having a Grundy-numbering or not is NP-complete. As a bonus we obtain

a proof of Chvdtal's result that testing a graph for having a kernel is

NP-complete.



1. INTRODUCTION

Let G=<V,I'> be an arbitrary (directed) graph, and let for all
xeV: Tx={yeV|{x>yel} be the set of neighbors of «x (as in Berge
[21).

A function g: V-N assigning numbers to vertices is a Grundy-
numbering if and only if for all x in the graph g(x) fs the smallest
nonnegative integer not assigned to any element of T(x) (cf. Berge [2]).
The concept of such a ﬁumbering originated in the theory of games (Nim),
~ but -was introduced for arbitrary graphs by Berge and Schiitzenberger.

For undirected ("symmetric") graphs is known that having a Grundy-
numbering with max{g(x)} <k 1is equivalent to the graph being k-colorable,
at the cost of ax:X1ynomia1 time bounded conversion (Berge [3]). As the
latter property is known to be NP-complete (cf. Karp [6]), it immediately
follows that finding a Grundy-numbering in undirected graphs is NP-com-
plete.

For directed graphs it can happen that there is no Grundy-numbering
at all (see Fig. 1), and we run into a different question. Whereas the
problem of finding a Grundy-numbering when there is one cannot possibly
be simpler than in the undirected case, there might be a more easily
testable global criterion for determining whether or not a graph has a
Grundy-numbering at all. We show that in a well-understood sense the
existence of such an efficient criterion is unlikely: we prove that testing
for a Grundy-numbering still is an NP-complete task.

A set of vertices S<SV 1is a kernel of G (french: noyau, cf. Berge
[3]) if and only if for all x: xeS->TxnS=¢ and x£S~+TxnS#0.

Some graphs do and other graphs do not have a kernel. Berge [3]

showed that if a graph has a Grundy-numbering then it has a kernel (namely:



S={veV|g(v) =0}, but the converse does not always hold.

As a bonus from the construction for proving that Grundy-numbering
is NP-complete, we obtain a simple argument that the computational task
of testing a graph for having a kernel is NP-complete. (Again, we do
not require that an actual kernel be produced once the existence is as-
certained). The same result was reportedly also proved by V. Chvdtal
some time ago ([5]).

For an introduction to NP-complete problems and the relevance for
the theory of computing one is referred to Aho, Hopcroft, and Ullman

(111, Cch 10).

2. TESTING FOR A GRUNDY-NUMBERING

Let GRUNDY be the collection of graphs (in a suitably encoded form)
which admit a Grundy-numbering.

A problem L 1is called p-reducible to problem M if and only if
there is a polynomial time computable transformation f such that for all
tested instances o of problem L: aelL<>f(a)eM.

Cook [4] showed that the problem (named: SAT3) of testing arbitrary
propositional formulae in conjunctive normal form with 3 literals per clause
for satisfiability is NP-complete. Following a strategy of Karp [6], one
may prove NP-completeness of GRUNDY by showing that (i) GRUNDY eNP and
(i) SAT3 is p-reducible to GRUNDY.

Suppose one must test an arbitrary instance a of SAT3 for satis-
fiability, with a containing m clauses and n distinct variables.

We shall give a simple, uniform procedure for transforming o dinto a
directed graph Ga with 8n+3m vertices such that o is satisfiable

if and only if Ga has a Grundy-numbering.



Given a, our first concern is a compact simulation of all possible

truth-value assignments for its variables XysooaaXpe

Consider the graphs

X X

O——-0—-0——0

-

O=—0

The only possible Grundy-numberings for these graphs are

| 0 1 ’
O— =0 —=0——0 0—eO0—ubdb_—.8
0 1 | l l 1 0 T l
O-'__O OQ———O s
1 0 0 1

and it immediately follows that we can realize (or: obtain) an arbitrary
assignment by identifying va1(xi) and va](ii) with g(xi) and g(ii)
respectively (interpreting 0 as "false" and 1 as "true").

It will turn out to be helpful in the construction below that we have
~ access to the complement of a truth-value assignment for the xi's, and we

shall be using graphs

X5 X;

Hit T vT —T @)
O __O O"'——‘"“‘O ’
Y5 Y;

thus forcing that g(xi) =0-+g(yi)==1' and so on.

THEOREM 2.1: GRUNDY is NP-complete.



Proof: GRUNDY is clearly in NP, because one can simp]y'guess an assign-
ment of non-negative integers (which need not be larger than the number
of nodes in the graph, cf. Berge [3]), and verify in polynomial time that
at each vertex the condition for a Grundy-numbering holds.

To show that SAT3 is p-reducible to GRUNDY, lay out the (sub)graphs

H],...,H and continue the construction of Ga as follows.

n
For each clause Cj of a (1<Js<m), lay out a subgraph

C)Cj

B.O O A.

J \\\§_~’/// J

(identifying Cj with the node shown).

Complete the construction of Ga by drawing an arc from Cj- to each

y.

; for

or &i such that X5 or ii (respectively) occurs in clause C

j°
each j. An example of the complete construction appears in the Appendix.
We claim that Ga has a Grundy-numbering if and only if o is satis-
fiable.
Let o be satisfiable, and let the Grundy-numbering for _H],...,Hn
be choosen so as to represent the assignment satisfying «. (Note that the
possible numbering of any Hi is not at all affected by the added in-coming
edges, i.e., this part of the numbering is not depending on how the re-
mainder of the graph is numbered).

Each clause Cj must contain at least one true literal (some X; or

’

ii), and node Cj must therefore be connected to at least one y; or 91

in Ga which has value 0 assigned.

One can complete the Grundy-numbering of Ga as shown below



nodes with value 0 or 1, but at
least one with 0

2

)

S350

0 1

Conversely, let us assume that G admits a Grundy-numbering.
Suppose that for some Jj, C. 1is connected to nodes Y; and ii

J .
which all have value 1 (recall that they can have either 0 or 1):

% > nodes with value 1
()

B On M

If g(Aj)==0, then g(Cj) =2 and thus g(Bj) =0, This contradicts
that g(Aj) is the smallest nonnegative integer not assigned to g(Bj).

If g(Aj) 21, then g(Cj)==0 and thus g(Bj) =1. It follows that
g(Aj) must be 0, again a contradiction. |

We conclude that each C; must be connected to at least one Y3 “or

J

91 which has value 0, and that each clause Cj must contain at least

one true literal. It follows that o 1is satisfiable. 0O

3. TESTING FOR A KERNEL

Let KERNEL be the collection of graphs (in a suitably encoded form)

’

which have a kernel.

The concept of a kernel for directed graphs (cf. Berge [3]) is some-

what similar to the concept of a maximal independent set for undirected



graphs. The succint difference is that, whereas an undirected graph
always has a maximal independent set (although it may be hard.to compute
one, see Tarjan & Trojanowski [7]), a directed graph does not always
have a kernel.

It is known that the problem of finding a maximal independent set
is NP-complete (cf. Karp [6]).

We show here that having a kernel is NP-complete also. It fb]]ows
that it is unlikely thét there is an efficient global criterion for even
testing whether a graph has a kernel or not, and there may very well be
no more efficient algorithm for it than essentially trying all "reasonable"
subsets.

Note that Berge [3] observed: GRUNDY ; KERNEL, and it follows that
testing for a Grundy-numbering is not a conclusive algorithm for the mere
existence of a kernel. Nevertheless, in showing that SAT3 is pfreducib1e
to KERNEL it appears that we can use the very same graphs Ga we had
befare.

The NP-completeness of KERNEL was reportedly also proved by V. Chvatal

some time ago ([5]). The result is included here because it follows in such

a natural fashion from our construction for GRUNDY.
THEOREM 3.1: KERNEL is NP-complete.

Proof: KERNEL is clearly in NP, because one can simply guess a subset of
V and verify in polynomial time that a node is either in the set while
none of its neighbors is or not in the set while at least one of its
neighbors is, for all nodes in the graph.

To show that SAT3 is p-reducible to KERNEL, construct for each in-

stance o of SAT3 the graph Ga as in 2.1.



As far as determining a kernel is concerned, the subgraphs Hi are
again independent of the other parts of the graph. Consider what nodes
of Hi can be (or: have to be) in the kernel if G has one at all.

Marking kernel-nodes as squares we get as only possibilities

X X; % X;
LI_J T EI] T 7? 7T )
;O ¥; O-—-/] y; L] 3’1(2 J=—-0
A N\ K% A
/ \\ 7\ N /N

It follows that we can again realize {or: obtain) an arbitrary
truth-value assignment by calling a node "false" if it is contained 1in
the kernel, and "true" otherwise.
We claim that G has a kernel if and only if o is satisfiable.
Let o be satisfiable, and let kernel-nodes in H],...,Hn be chosen
so as to represent the assignment satisfying a.
Each clause Cj must contain at least one true literal, and node
C. 1is therefore connected to at least one "square" y; or 91. One can

J
complete the kernel by putting

)

O

}at least one [J-node

Conversely, let us assume that G has a kernel.

If for some Cj belongs to the kernel, then neither Aj nor Bj

can. This would contradict that a neighbor of Aj is in the kernel.



The only possibility remaining is that Bj belongs to the kernel,
which in turn forces that Cj must be connected to at least one node
y; or 91 which belongs to the kernel (for each j).

It follows that each clause must contain a true literal, and a is

satisfiable. 0O



10

REFERENCES

[1]

[2]

[3]
[4]

[5]
[6]

[7]

Aho, A. V., J. E. Hopcroft, and J. D. Ullman, The design and analysis

of computer algorithms, Addison-Wesley Prubl. Co., Reading, Mass.

1974.

Berge, C., The theory of graphs and its applications, Wiley, New
York (1958).

Berge, C., Graphes et hypergraphes, Dunod, Paris (1970).

Cook, S. A., The complexity of theorem-proving procedures, Proc. 3rd

Annual ACM Symp. on Theory of Computing (1971) 151-158.

Garey, M. R., private communication (1976).
Karp, R. M. Reducibility among combinatorial problems, in: R. E.

Miller and J. W. Thatcher (ed.), Complexity of Computer Computations,

Plenum Press, New York (1972) 85-104.

Tarjan, R. E., and A, E. Trojanowski, Finding a maximum independent

set, Tech. Rep. STAN-CS-76-550, Stanford University (1976).



APPENDIX

a = (x]vxzv

x3)(>'<] v >_(2 v x3)()—<.I VXV >-(3)

IR



