
The Philosophy of Computation

Jan VAN LEEUWEN

Department of Information and Computing Sciences, Utrecht University
Princetonplein 5, 3584 CC Utrecht, The Netherlands

J.vanLeeuwen1@uu.nl

“The underlying phenomena is the generative ability of
computational systems [. . .]. Knowledge is the posited
extensive form of all that can be obtained potentially from
this process.”

A. Newell [16]

Abstract. Computation used to be synonymous to calculation. Now computa-
tion is what computers do, and it has become the engine of science. Increasingly
more powerful machines push the limit of what is known in many fields. In-
telligent systems compete with humans and win. Even natural systems like
cells or the brain are occasionally modeled in computational terms. Is this use
of computation still consistent with Turing’s ground-breaking insights from the
1930s that shaped our understanding of computation till the present? Is there a
notion of computation that is more fundamental? This challenging question is
one of many in the philosophy of computation. We consider some of the relevant
issues. What does computation actually do for us? Why do we compute? Is it
plausible that cognition is computational as a process? Is there some systematic
theory that explains it all? We consider possible answers.

1 Introduction

Computation used to be synonymous to calculation. Now it is one the pillars of modern IT and
tends to be identified with everything computers do. Ever more powerful machines push the limits
of what models can tell us, in any branch of science. Intelligent systems such as DeepBlue [15]
and Watson [7] compete with humans and win. Robots such as CHAPPiE [3] make us believe that
feelings, emotions, and even consciousness are computational. Can this really be?

Computation is traditionally about calculating functions and solutions to equations, with or
without the aid of a calculating machine. The mathematical interest for computation changed
character as the result of Hilbert’s famous question [13] whether there exists a finite decision
procedure for first-order logic. While solving this problem, Turing [22] developed his ground-
breaking model of computation that has shaped our thinking of computation since.

One may question the apparent implication that this has defined computation forever. In fact,
even Turing himself [24] conceived of various other types of machines that e.g. used real or random
numbers, had modifiable programs, or ran forever. He invented, what we now call, ‘artificial neural
nets’ and speculated about how machines might think, learn and be intelligent. In 1951, Turing [25]
contended that ‘machines can be constructed which will simulate the behaviour of the human mind

IIT.SRC 2015, Bratislava, April 23, 2015, pp. 1–12.

2 Keynote

very closely’, suggesting his belief that mental processes could eventually be understood in terms of,
or even as computation.

It appears that computation is a much more varied notion than its present technological incar-
nations suggest. In recent years, the term computation is indeed increasingly being used to describe
many other phenomena. Even natural systems like cells or the brain are occasionally viewed as
substrates that perform some kind of computation. In his recent book, Valiant [26] even went so far
as to explain evolutionary processes like adaptation by computation.

Is Turing’s model of computation still the most appropriate for them? Is there a notion of
computation that is more fundamental? Is there some overall theory, applicable to whatever sort
of computational system, that explains it all? Would it enable us to give satisfactory answers to
Abramsky’s seminal questions [1]: why do we compute, and what do we compute?

These challenging question are only some of the many questions in modern philosophy of
computation. Here we outline some of the issues in the understanding of computation, emphasizing
a recent approach by J. Wiedermann and the author [29, 30] and some newer work in [27]. Is it
conceivable that eventually a new theory of computation can be devised?

2 Philosophy

Computation has evolved into a highly pluriform notion. This has led to many descriptions of what
computation ‘is’. These descriptions invariably aim at some characterisation of how computation
must work on some underlying model of sufficient generality. We give a brief overview of the issues.

2.1 General

The philosophy of computation began, in principle, with the understanding of calculation and
arithmetic in ancient times. It now explores the potential of discrete and scientific computation as
we know it today. Other origins are found in information processing and in the development of
agent-based systems. Also, the computational modeling of mental and natural processes gave rise to
many new perspectives on computation.

The philosophy of computation concerns itself with all questions related to the concrete under-
standing of computation, in all contexts in which it is recognized. Unlike notions like ‘information’
and ‘communication’, computation does not have a long tradition in philosophy. Much of what has
been studied arose from questions in logic, mathematics, and the sciences from the late nineteenth
century onward.

Some of the major issues include: identifying the objects of study within science and tech-
nology, understanding the development of computation and computational modeling in context,
understanding computation from e.g. an information- or complexity-oriented viewpoint, the role of
representations and theories, and the impact of computation on our thinking and our future. Many
questions overlap and have aspects that are not listed here.

2.2 Current Views

Computation is now seen as a much broader notion than captured by Turing’s model. Even if there
are ways to make e,g, Turing’s models fit, this exercise may not give a truthful model [28]. Current
approaches either aim to enrich existing models like Turing machines with new mechanisms (such
as oracles), devise new models inspired by natural systems (like DNA- and quantum computing), or
change the perspective altogether (as in abstract state machines [12]).

Many of the current views hold that computation is some kind of process that can be seen
as manipulating symbols and transforming information, iteratively or otherwise. The refinements
most often added, aim to capture the kind of operational mode by which the transformations are
effectuated. Here are some of the typical definitions:

Jan van Leeuwen: The Philosophy of Computation 3

– Computation is the execution of step-by-step procedures for processing information (Valiant
[26]).

– The most general definition of computation is as information processing. Computation is the
process (or collection of processes) of acquiring information, transforming it, and providing
the outcome to the outside world (Akl [2]).

– A computation is a physical process in which physical objects like computers, or slide rules
or brains, are used to discover or to demonstrate or to harness properties of abstract objects -
like numbers and equations (Deutsch [6]).

– Computation in the broadest sense is anything that happens (as opposed to things being static).
If so, then the principles of computation are, in fact, the principles of processes (Frailey [11]).

Even though some scientists prefer to stay with Turing’s concept of computation from the 1930s
([10]), the different viewpoints reflect the broader scope of computation as perceived now. But,
where do the definitions point? Have we really gained much so far?

The viewpoints above have in common that they all (try to) describe computation in some
absolute, i.e. observer-independent way. This may be possible for computation by machines but
becomes problematic in other cases e.g. in computational views of natural systems. Shouldn’t one
focus on the question what computation does rather than on how it does it? We will outline the
viewpoint developed recently by J. Wiedermann and the author [29, 30] that does exactly this.

3 Computation and Knowledge

Can a change of viewpoint help and make a difference? In this section we will argue that it does.
Given the limitations of the machine-oriented views, we will look at computation at another level of
abstraction. We will argue that computation, above all, is a process of knowledge generation.

3.1 A View of Computation

The views of computation have evolved considerably over time. Computation has been looked at as
calculation, symbol manipulation, information processing and as a process, often in connection to a
model of computation that is considered as being realistic now or in the future.

Also the targets of computation have evolved considerably. Computation used to be reserved for
evaluating (mathematical) functions and solving models. Nowadays it is seen as the driving force
behind any reactive (input-output) behaviour of whatever system or agent, or their components, for
which this makes sense. In medicine, the decision schemes for diagnostics or treatments are being
used in a similar sense. How can this be read, philosophically?

Following [29], we look at computation as a phenomenon above the systems level, at - what
Newell [16] has called - the knowledge level. The notion of ‘knowledge’ is purposely left open and
intuitive. What do we gain by taking this perspective?

The connection between computation and knowledge is not a new one. Philosophers like Lull
(1230-1315) and Hobbes (1588-1679) already believed ideas and thought were brought about by
computation. Leibniz (1646-1716) contended that all ‘reasoning’ can be reduced to computation,
an ideal that is slowly becoming reality. Now we increasingly see processes becoming knowledge-
enriched, learning, and smart. Computation is increasingly seen as producing knowledge, i.e.
information of some kind that is meaningful to some substrate or party.

This points to the idea that computation has an epistemical connotation, leading to the following
thesis:

– Computation is a (any) process of knowledge generation, in the context of some suitable
knowledge domain [29].

4 Keynote

This viewpoint is attractive because it emphasizes the ‘goal’ rather than the ‘means’ of compu-
tation. It does require that one knows what is meant by ‘knowledge’ and how it is taken up, but this
is usually understood (and a good test). Some examples of computational systems from different
areas are shown in Table 1 (from [29]).

Computational system Underlying knowledge do-
main

What knowledge is pro-
duced

Contemporary computing systems
Acceptors Formal languages Language membership
Recognizers Formal languages Membership function
Translators Functions, relations Function value
Scientific computing Mathematics Solutions
Theorem provers Logic Proofs
Operating systems Computer’s devices and pe-

ripheries
Management of computer’s
own activities

Word processors and graph-
ical editors

Graphical layout, spelling,
grammar

Editing skills

Database and information
systems

Relations over structured fi-
nite domains

Answers to formalized
queries

Control systems Selected domains of human
activity

Monitoring, control

Search engines Relations over unstructured
potentially unbounded do-
mains

Answers to queries in a nat-
ural language

Artificial cognitive systems Real world, science Conjectures, explanations
Natural computing systems

Living systems, cells Real world Life, behavior, intelligence
Brain, mind, social net-
works

Knowable world Knowledge of the world

The Universe Science Living systems
Non-Turing computing systems

Compass and ruler Euclidean geometry Euclidean constructions
BSS machine [4] Theory of real numbers Values of real functions
Oracles [23] A set A ⊆ Σ∗ Characteristic function of A

Super-Turing computations Formal languages in Σ2 Language membership

Table 1. Computation as knowledge generation (cf. [29])

The table is mostly self-explaining. Note that the natural computing systems in the table satisfy
our criterion of computationality, but do not do fit most of the classical definitions of computation.
The items in the last part of the table seek the limits of our definition, illustrating that computation may
be meaningful as a concept even when there is no immediate physical realization of the computational
mechanism at hand.

We do not digress on the further details of the definition here. It would require us to express what
it means for a process Π with input ω to generate some knowledge item κ in the context of a theory T
and the available knowledge for the knowledge domain at hand. To keep the desired flexibility, we
have to allow both formal and informal theories here, as seen in Table 1. Further details are given
in [29, 30].

Jan van Leeuwen: The Philosophy of Computation 5

A major advantage of the given definition is that it is no longer fixed to a specific algorithmic
mode of implementation. Abramsky’s questions [1] about the nature of computation have a direct
answer in this framework as well: we compute in order to generate the knowledge we want or need.

3.2 Observing Computations

The question what constitutes knowledge in a certain context clearly depends on the views or theories
of the observer. What is knowledge to some, may not be for others. The question is whether observer-
dependence is avoidable at all when deciding whether some process is computational. We outline a
provocative argument from [30] that shows that it may not be.

Consider observers, or agents, that are designed to decide the computationality of any process
C that they ‘see’, using the definition of computation above. How might an observer do this? Is
there a universal test for computations? Let us specify the question a little further.

Assume, first of all, that observers are computational processes themselves. This is a reasonable
assumption if we believe in the testability of computations. A consequence is that it leads to the
situation in which one computational process (the observer) has to observe the properties of another,
possibly computational process and decide something about it. In the extreme case, an observer may
be observing another observer, possible even itself. Before we argue that this is bound to lead to
problems, we discuss how an observer could realistically ‘do its best’.

When observing a process C, an observer must verify all requirements of the definition we
gave, in order to decide whether C is computational. Thus, the observer must do a systematic check
whether the knowledge item κ is indeed derivable from the input ω according to theory T , and
whether there is an adequate explanation that the underlying process indeed generates it. In [30]
various options are described how an observer might do this, even in the context of ‘informal’
theories. Clearly some observers may be more expert at this than others.

Can there be observers that are competent enough to always make the right decision? This is a
difficult question, because we have no absolute notion of decisions being right or wrong when the
issues involved are observer-relative like we have. In fact, it might well be that observers inherently
disagree many times. The following, informal, result shows that this is indeed unavoidable, under
the assumptions we made. The proof is similar to that of Rice’s theorem in computability theory.

Theorem 1 ([30]) There exists no universal observer whose verdict always agrees with the verdict
of every other observer.

The theorem is almost a ‘proof’ of the observer-relativity of computation. Nevertheless, the
claim may be countered by attacking some of the assumptions on which the argument is based. Is
the assumption that (universal) observers are computational correct? Can one actually specify and
observe processes so a decision of their computationality can always be made? Are observers only
useful if they are restricted to the knowledge domains they can handle?

4 A New Model of Computation?

If we accept the view that computation is a knowledge generating process, could it lead to a new kind
of theory of computation? It is too early to tell, but we sketch a possible direction in which this may
be found. We outline a theoretical model, recently suggested by the author and J. Wiedermann [27].

4.1 Defining Computation

We have distinguished between the ‘system’ level, where the underlying mechanism of a computation
unfolds, and the ‘knowledge’ level, where the generated outcomes are observed (as in Newell [16]).
Collecting the observables at the respective levels, leads us to consider two separate entities for a
computation first: the action space of a computation, and the knowledge space of a computation.

6 Keynote

4.1.1 Action spaces

An action space A contains the meta-items that capture a given computational mechanism in action.
The notion is essential in our understanding of computation and is of course observer-dependent.

Observing the meta-items of a computation in progress suggests that there must be a sense of
proximity among the meta-items as they occur in sequel. Thus action spaces must have some local
structure such that computations can be defined in them in a meaningful way at all. We capture this
by postulating the following: Action spaces have an induced topology.

The topology of an action space derives from the proximity relation that is obeyed by the action
of the mechanism. With this postulate, we can use topological notions and define e.g. continuous
mappings over action spaces.

We assume that any action space A contains a core set A0, consisting of the meta-items that
correspond to valid ‘initialisations’ of the underlying mechanism. We make no assumptions on how
the mechanism that underlies the computation actually works. The mechanism may follow any mode
of operation, consist of any number of cooperating components, interact with any environment and
more. This gives action spaces the generality we want. We give some examples from [27].

Example 1 The observable descriptions of a living cell form an action space. The meta-items give
information about its development, a level of abstraction away from the concrete cell. We may be
interested in some special knowledge, e.g. a chemical compound or a property of the cell, which is to
be gleaned from the meta-items. (Note that meta-items may be real-valued.) We may also consider
the metaspace of a family of cells, as in an experiment. In this case the metaspace is defined by the
joint behaviour of the cells over time, with or without taking environmental influences into account.

Example 2 The possible ‘full information descriptions’ of a computer executing a (known or un-
known) chain of instructions form an action space. Meta-items display the possible instances of
registers and memory filled with bits. By ‘observation’ we may read out or interpret any meta-item as
knowledge, if indeed it fits the sort of knowledge we are interested in. The meta-items can correspond
to any mode of execution (sequential, parallel or distributed).

4.1.2 Knowledge Spaces

At the knowledge level of a computation, knowledge presumably can be qualified in terms of
‘knowledge items’ (in some domain). We assume that there is some way of delineating the potentially
occurring knowledge items in the space (which does not mean that these will all be generable). We
assume that every knowledge space E contains a core set E0 of facts that are initially known, by
observation or experience, or just by assumption. The following example is taken again from [27].

Example 3 The theory of a first-order structure S forms a knowledge space. The knowledge items
are sentences that hold in S. The core set of S consists of the postulates of S, and the mechanism
underlying the space is a combination of first-order inference and the evaluation (‘invention’) of new
sentences. Knowledge in this case follows the standard pattern of a formalized theory.

One could view the ‘dispositions’ of the brain as a knowledge space as well. In this case, the
knowledge items would be our possible mind sets, possibly restricted to a certain topic, and the
underlying mechanisms would be provided by our thought. The question whether the brain is a
‘computer’ or not (cf. [20, 21]) then reduces to the question how the knowledge space is actually
explored.

Jan van Leeuwen: The Philosophy of Computation 7

4.1.3 Computation

We now aim for a definition of computation. The definition will be fully machine- and algorithm-free.
Suppose that we have an action space A and a knowledge space E. Let A0 and E0 denote the

core sets of these space, respectively. We first express that (some) action-items x with x ∈ A may
contain information that maps to knowledge in E. We do this by means of a simple readout function
called a semantic map.

Definition 1 A semantic map from A to E is any partial mapping δ : A → E with the property that
δ(A0) ⊆ E0.

We require that δ(x) is obtained by only a simple ‘extension’ of the observational means that produce
x. No substantial extra effort should be involved. The condition that δ(A0) ⊆ E0 expresses that any
knowledge in the items of A0 should be part of the initial knowledge in E0.

We now define computations, in this model. Recall that A is assumed to be a topological space.
Thus it makes sense to define curves in A. We posit that curves are precisely the sort of trajectories
that are traced by computations. Given a curve c, let cinit be its starting point and, if it is defined, let
cend be its ending point.

Definition 2 A computation is any curve c ⊆ A with the following properties:
(i) δ(cinit) is defined, and

(ii) if cend is defined, then δ(cend) is defined as well (i.e. ∈ E).

We require that any computation must start with ‘some knowledge’ but do not insist a priori that
δ(cinit) ∈ E0. At intermediate points, δ need not always be defined. However, if the curve ends, δ
must be defined in its ending point.

Definition 3 A computation c is said to be enabled whenever δ(cinit) is known.

The definition of computation by means of curves seems natural. All information about how
the computation works is hidden, yet one can formulate all usual phenomena like convergence
(termination) and composition with great ease. We refer to [27] for details.

Finally, the term ‘computation’ is often used for a whole family of computations that are realized
by a same mechanism or some conglomerate of mechanisms. We use the term bundle here, indicative
of a ‘programmed’ set of computations.

Definition 4 A computation bundle is any collection of computations B = {ci}i∈I where I is an
index set and for every i ∈ I , ci is a computation (curve) in A.

One may argue that all computational systems reviewed in Table 1 can be made to fit the model
here, using suitable knowledge- and action spaces. We note that there are various other areas as
well in which computations are viewed as ‘objects’ in suitable spaces. We mention control theory,
trace theory (for concurrent systems), and computable topology (in type theory). See [27] for more
information.

4.2 Exploring Knowledge Spaces by Computation

Given a knowledge space, how can one discover (‘reach’) the knowledge items in the space? The
problem of knowledge generation is well-studied in philosophy and has given rise to principles like
formal inference, informal reasoning, analogy and so on. According to the views in [29, 30], the
overriding mechanism for knowledge generation is computation.

In trying to make this more tangible, we consider the definition of computation as given above.
What knowledge does a computation generate, in this setting? Can one compute more knowledge
items as more are found? Can one characterise the set of all knowledge items that can be generated
this way? And, can one ‘recognize’ the knowledge items that can be generated, computationally, in
this framework?

8 Keynote

4.2.1 Generation

Let E and let E0 be as above. Assume that we have a computational mechanism at our disposal for
exploring E. Let A be the underlying action space, δ : A → E the semantic map that reads out the
items, and B the bundle of computations that we can use.

A crucial question is how ‘knowledge’ is actually extracted from a computation c ∈ B. If
cinit ∈ A0 and cend is defined, then we may assume that δ(cend) is a ‘logical consequence’ of E0

and thus knowledge of the sort we are after. However, any knowledge computed ‘on the way’ may
be considered as being generated as well. Thus, if c is enabled, the entire set δ(c) ⊆ E may be
seen generated knowledge. As more and more knowledge is generated, an increasing number of
computations from B get enabled as well. This leads to more knowledge that can be generated, and
so on, indefinitely.

Let KB ⊆ E be the set of all knowledge items that can be produced and thus become known in
this way, using computations from B. In [27] it is shown how to define KB as a set. More precisely,
a set-theoretic operator G : 2E → 2E can be defined such that the following holds.

Theorem 2 ([27]) KB is the least fixed point of G that includes the core set E0. In particular, KB
is well-defined.

The proof uses the monotonicity of the knowledge generation process, and relies on the Tarski-
Kantorovitch Theorem to prove the existence of the fixed point.

4.2.2 Knowledge Recognition

Finally we consider the recognition problem for E. This is the problem of determining, for any given
knowledge item e ∈ E, whether e can be obtained by computation from the core set. Recognition
can be of greater concern than generation. For example, recognition processes take place in natural
systems such as found on the surfaces of cells and in cognition. Is recognition a computational
process?

One may think of recognition as a (new) process that generates all knowledge items that are
possible and that ‘flags’ an input item e as soon as e is encountered. It would work precisely for
all e with e ∈ KB. This type of connection between recognition and generation is well-known in
classical automata theory [14]. However, is this process computational again, by our definition?

The following definition shows how recognition may be defined as a computational process.
For every d ∈ D, let d+ be a corresponding knowledge item that expresses that d is recognised. Let
D+ = {d+ | d ∈ D}.

Definition 5 A recognizer R for some domain D ⊆ E consists of the following components:

– an action space B and a knowledge space F ⊇ D ∪D+,

– a semantic mapping µ : B → F,

– core sets B0 and F0 such that {µ(x) | x ∈ B0} ⊆ F0 = D ∪D+, and

– a bundle of computations S.

R is said to recognize item d ∈ D if, for some n ≥ 1, there are computations s1, · · · , sn ∈ S with
δ(sinit

1) ∈ {d, d+} such that the composition of s1, · · · , sn leads to knowledge item d+.

One can now argue that a recognizer can be construed from the computational process that
underlies E. Let A and δ : A → E be given for the computational mechanism, and let B be the
bundle we have at our disposal. Assume that {δ(x) | x ∈ A0} = E0.

Jan van Leeuwen: The Philosophy of Computation 9

Theorem 3 ([27]) With the given conventions, a recognizer for precisely the items in KB can be
constructed, based on the computational mechanism underlying E.

The proof shows that one can modify the action space A and the (view of the) computations, such
that a suitably designed semantic map that checks equality between knowledge items does the rest.

The approach using curves enables one to model various properties of computation that seem to
be inherent to the notion. The given overview represents ‘work in progress’ that should eventually
learn us how far the model can be extended. We refer to [27] for a more complete description of the
ideas.

5 Reflections

We have explored several aspects of the philosophy of computation but focused mainly on the core
question, namely understanding the nature of computation itself. We have argued that the rise of the
computational paradigm in all sciences calls for a broader concept of computation than is expressed
in models like Turing’s [22]. Where do we stand?

5.1 When is a Process Computational

In many views of computation, one aims to capture how a process must ‘compute’, in some absolute
sense. In order to arrive at a more broadly applicable notion, we have pursued the belief that
computations should be understood at - what Newell [16] calls - the knowledge level of the underlying
processes. To concretise this, we described the ideas of J. Wiedermann and the author which assert
that, in order for a process to be computational, one should be able to view it as a process of
knowledge generation. We followed up on this philosophy by designing a topological model of
computation.

The details of the model provide a kind of ‘test’ for the computationality of arbitrary processes.
The test should be more widely applicable than previous tests, which all use some kind of analogy
to information processing by (networks of) computers. Here are the steps needed for testing the
broader notion, given some observed or artificial process or set of related processes.

– Specify the action- and knowledge spaces, and their core sets, that play a role. This step
involves crucial decisions on the part of the observer on how the processes are to be observed,
sensed, measured, and so on.

– In connection to this, a semantic map should be defined that links the observables of the
action space, when applicable, to items in the knowledge space.

– Next, the allowable progressions of the underlying mechanism should be described as a
bundle of ‘motions’ in action space. Again, this step involves crucial decisions on the part of
the observer on what the process is effectuating.

– Finally, there should be a justification that knowledge is generated correctly by the laws of
the knowledge space, and that it can be ‘explained’ that this is achievable by the process in
action space (regardless of how the process actually does it).

The test has various informal elements. If there is no sense of knowledge being produced,
then the test will fail. However, if the test succeeds, the processes at hand can validly be seen as
computations, by the philosophy we described. No further assumptions are needed, in particular we
do not need any finitary symbolic representations up-front as is often stipulated in the classical case
(cf. Fodor [9]). Clearly, some other form of representation may come in when specifying an action
space.

10 Keynote

5.2 Computation as Knowledge Generation

The understanding of computation as a knowledge generation process brings a variety of advantages
that are occasionally lacking in older, mechanistic views. A major advantage is that less conventional
cases of computation like processes in cells are covered, in this understanding of computationality.
The advantages of viewing computation as knowledge generation can be summarized as follows.

– It gives a criterion for separating computational processes from non-computational ones. We
argued that the implicit observer-dependence of this test seems hard to avoid, but also that
this seems necessary for applying the notion of computation in modern system contexts.

– It focuses computation on its intrinsic meaning. This gives computation a sound position in
philosophy and a potential impact on understanding processes in other areas like cognition
and artificial intelligence. For example, in [31] the philosophy is applied in an attempt to
understand the nature of epistemic creativity. There also may be an impact on epistemology
itself, e.g. by the renewed attention for the question of identifying ‘knowledge generation’.

– It does not depend on any operative model of the underlying mechanisms. This also recognizes
the computational models which emphasize the role of the knowledge level.

– It resolves some of the notorious ‘boundary cases’ that are difficult with the classical defini-
tions of computation. For example, according to our definition, ecorithms (Valiant [26]) and
cognition are computation. For other cases, see [29].

– It allows us to consider computations at a (very) high level of abstraction. This opens the way
to new formalizations of computation as a phenomenon, hopefully leading to a new theory of
computation that is suited for the applications in modern systems.

– It gives new meaning to the ‘computation-centric’ perspective on computer science. It
explains the omnipresence of computer science as a key discipline, as a consequence of the
omnipresence of knowledge generation.

– And, finally, it enables one to answer Abramsky’s questions [1] about the essential under-
standing of computation: what do we compute, and why? The answer presents itself at the
moment one steps away from the system level to the knowledge level, as explained above.

The philosophy of [29, 30] clearly needs further scrutiny. What are its limits? Boundary cases
to investigate are plenty and can be found e.g. in the computational views of cognition [18, 19] and
in pancomputationalism [17].

6 Conclusion

The philosophy of computation has become a broad subject, as computational modeling is now
recognized (and used) in the study of almost all scientific phenomena. In this overview, we focused
on only one question, albeit a crucial one for the entire field namely: what is computation?

We have especially focused on the recent ideas from [27,29,30] which relate computation to the
generation of knowledge in some suitable knowledge domain. What represents knowledge in this
context is observer-dependent. The philosophy differs from previous approaches which have tried to
find unified models at the systems levels, aiming to explain how computation is performed. In stead,
we aim to understand what computation does for us, or for that matter, for any agent that values or
even relies on the outcome for its future goals. This makes computation to a philosophically sound
and relevant notion.

Jan van Leeuwen: The Philosophy of Computation 11

By bringing the worlds of computation and knowledge generation together, the philosophy
reflects the fact that the domains have been remarkably converging to each other in the present time.
The approach may well lead to a different type of theory than is known for computation in Turing’s
sense. This may be unavoidable if one wants to capture the broad range of notions that fit under the
term computation today. Understanding computation thus continues to be very much on the agenda.
Can new, so far undiscovered forms of computation be identified?

Acknowledgement: This paper is based on recent, joint work with Jiřı́ Wiedermann, Institute of
Computer Science, Czech Academy of Sciences, Prague, Czech Republic.

References

[1] S. Abramsky, Two puzzles about computation, in: S.B. Cooper, J. van Leeuwen, Alan Turing -
His Work and impact, Elsevier, 2013, pp. 53-57.

[2] S.G. Akl, What is computation?, Technical Report 2013-608, School of Computing, Queens’s
University, Kingston (Ont.), Canada, 2013.

[3] N. Blomkamp, CHAPPiE, Columbia Pictures, 2015.

[4] L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real num-
bers: NP-completeness, recursive functions and universal machines, Bulletin of the American
Mathematical Society 21 (1): 1-46 (1989).

[5] S.B. Cooper, J. van Leeuwen, Alan Turing - His Work and Impact, Elsevier, 2013.

[6] D. Deutsch, What is computation? (How) does nature compute? In: H. Zenil (Editor), A
Computable Universe: Understanding and Exploring Nature as Computation, World Scientific
Publishing Company, 2012, pp. 551-566.

[7] D. Ferrucci et al., Building Watson: An overview of the DeepQA project. AI Magazine 31:3
(2010) 59-79.

[8] L. Floridi, The Philosophy of Information, Oxford University Press, Oxford, 2011.

[9] J.A. Fodor, The mind-body problem, Scientific American 244 (1981) 124-132.

[10] L. Fortnow, The enduring legacy of the Turing Machine, Comput. J. 55:7 (2012) 830-831.

[11] D.J. Frailey, Computation is process, Comput. J. 55:7 (2012) 817-819.

[12] Y. Gurevich, Foundational analyses of computation, in: S.B. Cooper, A. Dawar, B. Löwe (Eds.),
How the World Computes, Proc. CiE 2012, Lecture Notes in Computer Science 7318, Springer,
2012, pp. 264-275.

[13] D. Hilbert and W. Ackermann (1928). Grundzg̈e der theoretischen Logik,a Springer-Verlag,
Berlin, 1928.

[14] J.E. Hopcroft, J.D. Ullman, Formal languages and their relation to automata, Addison-Wesley
Publishing Company, Reading, MA, 1968.

[15] M. Newborn, Kasparov versus Deep Blue: computer chess comes of age, Springer, 1997.

12 Keynote

[16] A. Newell, The knowledge level, Presidential address, AAAI’80, 19 August 1980, in: AI
Magazine 2:2 (1981) 1-20.

[17] G. Piccinini, Computational modelling vs computational explanation: Is everything a Turing
machine, and does it matter to the philosophy of mind?, Australasian Journal of Philosophy
85:1 (2007) 93–115.

[18] G. Piccinini, S. Bahar, Neural computation and the computational theory of cognition, Cognitive
Science 37:3 (2013) 453–488.

[19] Z.W. Pylyshyn, Computation and cognition: Toward a foundation for cognitive science, MIT
Press, Cambridge (MA), 1984.

[20] J.R. Searle, Minds, brains, and programs, Behavioral and Brain Sciences 3 (1980) 417-457.

[21] J.R. Searle, Is the brain a digital computer?, Proceedings and Addresses of the American
Philosophical Association 64:3 (1990) 21-37.

[22] A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc.
London Math. Soc. Series 2, 42 (1936) 230-265.

[23] A.M. Turing, Systems of logic based on ordinals, Proc. London Math. Soc. Series 2, 45 (1939)
161-228.

[24] A.M. Turing, Intelligent machinery, Report, National Physical Laboratory, 1948.

[25] A.M. Turing, Intelligent machinery: a heretical theory, in: B.J. Copeland, A lecture and two
radio broadcasts on machine intelligence by Alan Turing, in: Machine Intelligence Vol 15,
Oxford University Press, 1999, pp 445-476.

[26] L. Valiant, Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering
in a Complex World, Basic Books, New York, 2013.

[27] J. van Leeuwen, J. Wiedermann, Knowledge, representation and the dynamics of computation,
in: G. Dodig-Crnkovic and R. Giovagnoli (Eds), Representation and Reality: Humans, Animals
and Machines, Springer-Verlag, 2015 (to appear)

[28] J. Wiedermann, J. van Leeuwen, How we think of computing today, In: Computability in
Europe, Proc. CiE 2008, LNCS 5028, Springer, 2008, pp. 579-593.

[29] J. Wiedermann, J. van Leeuwen, rethinking computations. in: 6th AISB Symp. on Computing
and Philosophy: the Scandal of Computation, AISB 2013 Convention, Proceedings, AISB,
Exeter, 2013.

[30] J. Wiedermann, J. van Leeuwen, Computation as knowledge generation, with application to the
observer-relativity problem. In: 7th AISB Symp. on Computing and Philosophy, Proceedings,
AISB 2014 Convention, London, 2014.

[31] J. Wiedermann, J. van Leeuwen, Towards a computational theory of epistemic creativity, in:
Proc. AISB 2015 Symposium on Computational Creativity, AISB 2015 Convention, Canterbury,
2015 (to appear).

