
THE VLSI COMPLEXITY OF BOOLEAN FUNCTIONS

M.R. Kramer and J. van Leeuwen

Department of Computer Science, University of Utrecht

P.O. Box 80.012, 3508 TA Utrecht, the Netherlands

Abstract. It is well-known that all Boolean functions of n variables can be computed

by a logic circuit with o(2n/n) gates (Lupanov's theorem) and that there exist Boolean

functions of n variables which require logic circuits of this size (Shannon's theorem).

We present corresponding results for Boolean functions computed by VLSI circuits, using

Thompson's model of a VLSI chip. We prove that all Boolean functions of n variables

can be computed by a VLSI circuit of O (2 n) area and period i, and we prove that there

exist Boolean functions of n variables for which every (convex) VLSI chip must have

(2 n) area.

Keywords and phrases: logic circuit, Boolean function, Lupanov's theorem, Shannon's

theorem, VLSI, chip, area, period.

i. Introduction.

The requirements for VLSI circuits are not as relaxed as they are for logic cir-

cuits. For example, a VLSI circuit must be embedded in the plane and occupy only a

small amount of area, counting what it takes both for gates ~nd wires. Also there can

be no unbounded fan-in or fan-out, as basic switching elements can handle only a small

number of wires. In this paper we study the quantitative effect of these differences

on the "circuit complexity" of arbitrary Boolean functions.

It is well-known that all Boolean functions of n variables can be computed by a

logic circuit of 0 (2n/n) gates (Lupanov [2]) and that there exist Boolean functions

of n variables for which any logic circuit actually requires ~(2n/n) gates (Shannon

[6]). We shall prove that suitable analogs of these results hold when VLSI circuits

are used, but with the 2n/n replaced by 2 n in the bounding expressions. This suggests

that there is a fundamental difference in complexity between traditional logic circuits

and their counterparts in VLSI.

To prove upper- and lowerbounds on the VLSI complexity of Boolean functions we adopt

Thompson's simplified model of a VLSI chip ([7]). Essentially a chip is a bounded (con-

vex) region in the plahe~ with the plane divided into unit size cells as in the regular

grid (see figure i). Each cell may contain one basic switching element or (at most)

two crossing wires. Wires connect processingelements, and are constraint to run in

398

f
/

/
/ /
/ ,/

figure i.

strictly horizontal or vertical directions. (Wires can bend from one direction into

another in any cell, but can only cross and never run on top of one another.) The area

of a chip is defined as the area of the grid that it occupies. We assume, like Thompson,

that all switching elements act synchronously and that signals take unit time to propa-

gate over a wire regardless its length. The period of a circuit is the minimum interval

of time that must pass between consecutive sets of input data when the circuit is pipe-

lined. We use the standard notations: A for area, T for time, and P for period.

The paper is organised as follows. In section 2 we recall some concepts from the

theory of Boolean functions and provide a simple proof of Lupanov's theorem. It is

included for having the opportunity to point out why the resulting construction of

a logic circuit is not suited for VLSI. In section 3 we prove that all Boolean functions

of n variables can be computed by a VLSI-circuit of O (2 n) area and period i. In section

4 we prove that there exist Boolean functions of n variables for which any (convex)

VLSI circuit requires ~(2 n) area. All proofs are elementary.

2. Preliminaries, and a classroom proof of Lupanov's theorem.

°1 ~n A minterm in x ,... x is any expression of the form x ...x with O. C {0,I}
_i ' n 1 i n 1
O -- O C n

(1Sign), where xi~x i and ximx i. Observe that xll...x n m 1 if and only if x.mo, for

all i. If f(o I O n) = i, then x~l...x~ n is called a minterm for f. It is well-known

that every Boolean function f is the sum of its minterms. As there are only 2 n distinct

minterm expressions in all, the resulting expression for f is finite. A Boolean function

f is uniquely determined by the choice of its minterms. As there are 22n distinct sets

of minterms, there are 22n distinct Boolean functions of n variables.

The representation by minterms can be rephrased in computational terms. Consider

the lexicographic tree of minterms, modified such that the nodes "compute" the proper

xl or x.1 and "and" it to the partial term values in x I to xi_ I (l~i~n). The resulting

tree will be called the (general) mintree for n variables and is shown in figure 2(a).

It is a circuit with 2 i + 2 i-I logic gates in the i th level and (hence) (21+2 ±-I) =

= 3. (2n-l) gates total. Every leaf of the mintree corresponds to a unique minterm in

x I to x . Every Boolean function of n variables corresponds to a selection of leaves
n

399

x 1

x 2

emit i

level 0

level 1

l e v e l 2

(the mintree)

(a)

x I
x 2

X
n

%/,
~

! / m i ~ t ~ e e ~ k

~ or-tree ,,
\ I

(b)

figure 2.

of the mintree. Let the selected leaves be marked (by x, see figure 2.b) and suppose

another tree circuit is added that sums ("or-s") the computed values at the marked

leaves. The resulting circuit is shown in figure 2(b) and clearly is a logic circuit

of O(2 n) gates for computing any Boolean function by the proper masking of components.

We shall ignore the "or-" tree and concentrate on the mintree part. By optimizing

it we shall be able to derive a weak form of Lupanov's theorem ([2]) in a simple way.

Let f be an arbitrary Boolean function in x I to Xn and let T be the mintree with

marked leaves representing f. Cut T at level s, and consider the 2 s subcircuits (sub-

trees) attached to the nodes in this level. (The value of s will be fixed later, but

depth s

depth n-s

~ 2 s subcircuits, possibly many

of identical form

(a)

x 1

l

x S

%let
-- • dep ~n /-~'-~- "~:" ~ h n- s

v

the $2 2n-s distinct subtree

circuits, with no repetition

(b)

figure 3.

400

will be "almost equal" to n.) As circuits with input Xs+ I to Xn the subtrees are iden-

tical, but they may differ through their marking. Because the subtrees are small but

large in number, many must have the same marking and (hence) perform essentially the

same computation. Thus, to save gates, we might as well split the subcircuits off

from T and weed out all duplicates, and connect every intermediate node of level s

to the proper and unique copy of the subcircuit that was originally attached to it.

See figure 3(a) (b) for a pictorial illustration of this optimization of T. When phrased

in terms of Boolean functions the construction is known as the "Lupanov decomposition"

of f. Observe that every subcircuit of depth n-s has 2 n-s leaves, and thus there are

22n-s distinct subcircuits if we take all possible markings into account.

Theorem 2.1(Lupanov, 1958). Every Boolean function of n variables can be computed

by a logic circuit of o(2n/n) gates, with no unlimited fan-in's.

Proof

Count the number of gates in the Lupanov decomposition of f's circuit. There are

3. (2S-l) gates in the top part. Next there are ~22 n-s small tree circuits with

3. (2n-s-l) gates each. Suppose i. nodes from the original level s are connected to
]

the jth subtree circuit (l~j~22n-s). To avoid the unlimited fan-in, we can combine

them through an or-tree with i -I gates. This accounts for an extra of X(i -i) < ~i.=2 s
]]]]]

gates. Finally the results at the marked leaves must be summed in an or-tree to obtain

f(xl...x n) as output. Because we optimized the lower part of the mintree, there may

actually be fewer marked nodes in the subcircuits altogether that still (correctly)

represent f. Note that each of the 22n-s subtrees can be paired to one with a comple-

mentary marking, to contribute a total Of 2 n-s marked leaves. Thus there are aK most

2 n-s 22n-s 2. . marked leaves, and the or-tree summing for f needs to have no more gates

than this. The total number of gates in the circuit is bounded by:

3. (2s-i) + 3. (2n-s-l).22n-s + 2 s + ½.2n-s.22n-s

4.2 s + 3½.2n-s.22n-s

4. (2s+2n-s.22 n-s) .

Now choose s (integer) such that 2 n-s ~ n-~log n ~ 2 n-s÷1 , for some ~ to be fixed

later. It follows that 2 s ~ 2.2n/n-~log n and 2n-s.22n-s ~ (n-~log n).2n/n s ~ 2n/n d-l.

Thus the number of gates in the circuit is bounded b~

2 n
4. + 2n/n ~-I) =

(2 "n-alog n

= 2n/n" (8"n-~log n + 4/nd-2) =

= 0 ~2n/n) .

, for any S_->2. o

401

Note that we proved only a simplified version of Lupanov's theorem. The classical

result states that by additional techniques one can bring the constant factor in the

o(2n/n) termdown to i.

3. Area/time-efficient VLSI circuits for Boolean functions.

We now change our point of view to VLSI. We adopt all conventions as laid down

in Thompson's model except that, for the moment, we will allow unlimited fan-outs

by free "tapping" of a wire. The main issues are not gate counts, but area and time.

xi_ 2

xi- 1

Y

figure 4.

Trees are among the graphs that are easiest to lay out (see e.g. Thompson [7]) and

only require "linear" area. The circuit lay-outs presented in this section derive

from the common H-pattern design for (perfect) binary trees originally proposed by

Mead and Rem [4].

Consider the representation of an arbitrary Boolean function f as suggested in

fig. 2(b). For convenience we assume n even. The circuit of fig. 2(b) has a recursive

structure that can be exploited to obtain an area-efficient lay-out. The essential

idea is shown in figure 4. Build up the tree from the lowest level by adding two vari-

ables at the time, with the necessary logic to gate them into the four identical (but

perhaps differently marked) subtrees that are needed on the variables x.to x .
l n

The construction suggests that a Lupanov-type optimization (see theorem 2.1) does

not immediately lead to desirable effects for VLSI: (i) the many subtree circuits

that Lupanov optimizes are all in the lowest part of the mintree and (hence) uniformly

spread over the chip, and it would require much extra area and long wires to set the

circuits apart for general access, (ii) by the same token it would lead to many more

wire-crossings, which does not enhance the practicality for VLSI production and (iii)

the unlimited fan-in (or: the or-trees that simulate it) is not equal at all places

and (thus) creates severe problems of synchronization if the circuit is to be pipelined

unless we "pretend" the or-trees to be all equal and compiete. Redundancy has never

been an issue in logic circuits, but it may be unavoidable in VLSI circuits!

402

We shall now rid ourselves of the assumption of unlimited fan-out. Rather than

input the x I to Xn one after the other at separate levels of the mintree, we input

them simultaneously in parallel at the top and distribute the signals down the tree

while the computation of partial minterms in x I to x i (i ~ n) is taking place. The

idea is given in figure 5, where a-cells are used to represent the subcircuit that

appends a next x. to the computed terms at level i. Recursively continuing it leads
l

figure 5.

to ancther tree that computes all minterms at its leaves, the parallel mintree. Every

Boolean function f of n variables can be represented by a marking of the leaves of

the parallel mintree.

The parallel mintree has an area-efficient lay-out (see figure 6). The technique

derives from the H-pattern construction and consists of adding two variables xi_ 1

and xi_ 2 at a time (for i ~ i) while combining the four recursively obtained sab-

xi_ 1
x.--- x rest xi_ 2 l n

I 2
x--- x. t res

i n I
(

I I

~)

I b i

ires t i. ~-- x

I res t xi--- x n

figure 6.

403

circuits in x. to x . The D-cells in figure 6 actually are small circuits of some
l n

bounded size. The design uses a "t-" wire for accumulating partial minterms on the

way down the tree, and a "res-" wire for summing the results from the marked leaves.

Theorem 3.1. Every Boolean function of n variables can be computed by a VLSI-circuit

of O(2 n) area, with a compute time of O(n) and a period of O(i).

Proof .

Let C=C I be the resulting VLSI-circuit for f obtained by laying out the parallel

mintree as suggested. Let the i th intermediate circuit C. of the recursive construction
1

(starting with i equal to n-l) fit in a rectangle of size b xl . From figure 6 we
l l

= 2b.+(n-1) + 9 and li_ 2 l conclude that hi_ 2 i = 21.+(n-i) + 8. (The additive constants

are really larger, because the detailed circuits for the D-cells require more than

unit area.) It follows that bl = °(2n/2-n) and 11 = o(2n/2-n) and (hence) that C occu-

pies no more than O (2n) area.

The time bound of O(n) for computations with C is obvious. The period of 0(i) fol-

lows because C can process an entire input tuple in parallel as a single wavefront

going down, With the possibility of sequencing consecutive wavefronts at unit time

distance. []

4. Optimal area/time bounds for Boolean VLSI-circuits.

For particular Boolean functions f of n variables the bounds of theorem 3.1. may

not be best possible. (See e.g. Thompson [7] for many examples of essentially Boolean

functions that require only O(n) or O(n 2) area, or O(log n) time.) The question is

rather how tight the bounds are if the theorem is taken as a uniform statement for

the entire class of Boolean functions of n variables. It is clear that the O (i) bound

on the period of circuits can not be improved. We show that none of the other bounds

in theorem 3.1. can be improved either.

Theorem 4.1. There are Boolean functions of n variables such that any circuit to com-

pute them requires ~(n) time on some inputs.

(The result is a simple variant of the fact that there are Boolean functions that

require circuit depth n, see Savage [5]. The proof is omitted.)

A natural question is whether the O(2 n) bound on the area requirement for general

Boolean functions can be improved.

404

Proposition 4.2. Suppose all Boolean functions of n variables can be computed by cir-

cuits that fit on a fixed chip of area A. Then necessarily A = ~(2n).

Proof

Recall that a chip was defined to be a connected region of the unit grid. Assume

there is a fixed chip R of area A such that for all Boolean functions f of n variables

there is a circuit to compute it that can be embedded in R. According to Thompson's

model each cell of R can be occupied by at most one of the finitely many different

constructs, say c altogether. Thus at most c A different circuits can be embedded in

R. On the other hand, the number of distinct Boolean functions of n variables is 22n.

It follows that c A ~ 22n, or A = ~(2n). m

The assumption that there be a "general chip" is too strong to measure the area

requirement of Boolean functions. We shall now consider circuits fitted on their own,

optimal area chips. To be realistic we require that the chips are convex. (This is

a very common constraint, see e.g. Brent and Kung [i]). By the following two lemmas

we shall be able to "mold" every circuit that fits on a convex chip of area A into

a form that fits in a standard (iso-oriented) rectangle on the grid of area O(A).

Lemma 4.3. Every convex chip of area A can be enclosed by a (tilted) rectangular box

of area 2A.

Proof

(The easy argument can be derived from e.g. Yaglom and Yaglom [8], solution to

problem 120a.) Let R be a bounded convex region of area A (see figure 7). Let AB

be the longest chord. The tangents to R at A and B are perpendicular to AB. Now

"enclose" R by drawing the (two) lines of support that are parallel to AB. Let the

H

figure 7.

405

lines touch on R at C and D (see figure 7). In figure 7 is indicated that R is now

enclosed by OEFGH, formed by the four intersecting tangents. By convexity DADBC c R

and (hence) []ADBC has area SA. On the other hand, by geometric reasoning it follows

immediately that []ABHE = 2.AABC and that OABGF = 2.AABD and (hence) that DEFGH =

= 2.OADBC ~ 2A. []

Lemma 4.4. Let circuit C be embedded on the unit grid within a rectangle of area A

that is tilted by angle d(0_<~]~u/4). Then C can be embedded on the unit grid within

an iso-oriented rectangle of area bounded by (I + 2tan~ - tan2~)A ~ 2A.

Proof

Let C be embedded on the grid such that it is enclosed by a rectangle of size ixw

(l~w and l.w=A) whose longest side makes an angle d with the positive x-axis of the

grid (see e.g. figure 7). It is no restriction to assume that 0-~$~/4, for otherwise

the argument holds for a properly reflected or rotated version of the problem. We

also assume that no cell cut by the boundary of the rectangle is used by C.

Divide the rectangle (and correspondingly, the circuit) into parts AI, A 2 and B

as shown in figure 8. Parts A 1 and A 2 are "padded" to iso-oriented rectangular boxes

w/cos~

W

-- 1 I

i

I wsinal lcosa-wsin~ wsina,

q/COS~

figure 8.

of size w/cosd × wsind each. Part B consists of l.cos~ - w.sin~ columns of w/coss cells

each. Because ~/4, each column can differ by at most one cell at either end from

the immediately preceding column (see figure 9). It means that we can bring B down

to an iso-oriented form by shifting each of its columns downwards by at most one cell

with respect to the immediately preceding column, resulting in a circuit as shown

in figure i0. Figure 9 shows that this can be done within the constraints of Thompson's

model, provided that we include a spacing of one extra column in between every pair

4 0 8

i i

I I

t
!
|
I
I

/

/
- I

/

extra column

I I

i 4%<i~,

figure 9.

of columns. This explains that in figure i0 the length of the B-part is at most doubled.

Thus circuit C appears embedded in an iso-oriented rectangle of width w/cos~ and length

about 2.l.cos~, and hence area 2.l.w = 2A. By being a little more accurate, one can

w/co ss

ws ind

t

I
I
t
I

.__J

, I I
I I I
! ; t
I I I
I i I
i i B i
I j I
I i I
I I I
I I I
I__ I L__ I , __J

_-<2. (l c o s ~ - w s i n ~) ws inn

figure i0.

see that a down-shift over one cell (hence, the need for an extra column) is required

only once in every i/tans columns. It follows that the length of a can remain at

(l+tana) times the original. Hence C fits in an iso-oriented rectangle of size

(l+tan~) - l.cos~ + (l-tan~).w.sin~ by w/cos~, which has an area bounded by (l+2tan~-

-tan2~).A. m

We conclude that the convexity assumption in VLSI-theory degenerates and does not go

much beyond assuming that chips are rectangular[(In all fairness we should add that

this only applies if one adopts the grid-model for the chip surface.}

Corollary 4.5. Every circuit that fits on a convex chip of area A can be embedded in

an ordinary iso-oriented rectangle of area ~4A.

407

Theorem 4.6. There are Boolean functions of n variables such that every convex chip

for them requires ~(2 n) area.

Proof

Suppose that all Boolean functions of n variables can be computed by convex chips

of area ~A. By corollary 4.5. we may as well assume that all circuits fit in an iso-

oriented rectangle of area ~4A. Now note that there are at most ~4A = 2.~A different

(i.e., non-isomorphic) iso-oriented rectangles of area ~4A, and that each of these

rectangles can have at most c 4~ different circuits. (The constant c is as in the proof

of proposition 4.2.) It follows that necessarily 2~A.c 4A ~ 22n, and (hence) that

A = ~(2n). []

By an only slightly more sophisticated argument one can see that theorem 4.6. also

holds without the convexity assumption. Note that every chip of area ~A is fully des~

cribed by its contour which, When "projected" onto the grid-lines, can be encoded into

a string of length ~4A over the alphabet {L,R,U,D} (L for "one square left", etc.).

It follows that there are at most 4~ 41 < 4 .4A d A i = ~.4 ~ (some d) chips of area ~A. On

each chip at most c A different circuits can be fitted. To accomodate all Boolean func-

tions of n variables one must necessarily have cA.d A = (cd) A ~ 22n, and (hence) that

A = ~(2n). By a more detailed counting argument it follows that almost all Boolean

functions of n variables require ~(2 n) area.

5. References.

[i] Brent, R.P. and H.T. Kung, The area-time complexity of binary multiplication,
J.ACM 28 (1981) 521-534.

[2] Lupanov, O.B., A method of circuit synthesis, Izv. V.U.Z. Radiofiz. 1 (1958)
120-140.

[3] Mead, C.A. and L.A. Conway, Introduction to VLSI systems, Addison-Wesley, Reading,
Mass., 1980.

[4] Mead, C.A. and M. Rem, Cost and performance of VLSI computing structures, IEEE
J. Solid State Circuits SC-14 (1979) 455-~62.

[5] Savage, J.E., The complexity of computing, John Wiley & Sons, New York, N.Y.,
Ig76.

[6] Shannon, C.E., The synthesis of two-terminal switching circuits, Bell Syst.~Techn.
J. 28 (1949) 59-98.

[7] Thompson, C.D., A complexity theory for VLSI, (Ph.D.Thesis), Techn. Rep. CMU-CS-
80-140, Dept. of Computer Science, Carnegie-Mellon University, Pittsburgh,
P.A., 1980.

[8] Yaglom, A.M. and I.M. Yaglom, Challenging mathematical problems with elementary
solutions, Holden-Day, San Francisco, CA., 1967.

