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J. van Leeuwen

ON THE CONSTRUCTION OF HUFFMAN TREES

ABSTRACT. We develop a feasible linear time algor-
ithm to construct optimal alphabetic binary Huffman
trees for ordered sets of records. For arbitrary
arrangements very good approximations can be found
in linear time also. It leads to a new algorithm
for constructing ordinary Huffman trees and we argue
that its complexity is essentially optimal. We in-
troduce weakly stable alphabetic trees which are
easier to maintain than optimal trees when access-
frequencies are modified or changed at run-time.
Using the appropriate data structures a weakly sta-
ble tree on n records can be constructed in nlogn
steps.

INTRODUCTION

Suppose n records TqreeerTy with probabilities
Wyrese,W, are arranged at the leaves of a binary
search-tree, and let li be the path-length needed

for accessing r,. Any tree achieving a reduced and

n
possibly smallest value of ] w,1, (the average
i=1

search time for the file) will be informally called
a Huffman tree. Huffman trees were originally con-
ceived in coding theory for finding minimum redun-
dancy codes (Huffman 1952). Huffman gave the first
algorithm for constructing an optimal tree based on
a "bottom-up" combination of subtrees. (See also
Karp 1961). An "unusual" application of Huffman
trees is found in determining the order of summation
for a finite set of numeric terms to get a minimal
worst-case rounding error.

our present interest relates to optimal file or-
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ganization and aims at a further study of the combi-
natorial nature of Huffman's algorithm and similar
schemes. Knuth (1968, p. 404) gives a few proper-
ties, but little is mentioned about computational
aspects except that there is an 0(n log n) algor-
ithm. We shall prove that 0(n log n) is optimal for
a wide class of algorithms.

Schwartz & Kallick {1964; see Knuth 1968, p. 589)
observed that if w, < .... < w_ then an optimal

uffman tree exists with r1,..r.1.,rn at the leaves in

consecutive order. It is known as an alphabetic op-
timal Huffman tree and Ehe paper of Schwartz &
Kallick suggests an 0(n“) algorithm. We shall prove
that there is a feasible linear time algorithm to
construct it, and the algorithm will produce such a

tree with smallest lmax' Our method depends on the

particular nature of Huffman's algorithm in this
case and consists of subtree-rearrangements in a
doubly-linked ("chained") tree which require little
time. 1If links are retained in the final tree we
automatically have the kind of structure sometimes
advocated for flexible files (see e.qg. Sussenguth
1963, Patt 1969, and Hu 1972).

In the case of an arbitrary ordering of records
it is difficult to understand the precise nature of
optimal alphabetic trees. Knuth (1972, p. 433-439)
gives an 0(n2)-time and -space algorithm based on a
dynamic programming principle (see also Gilbert &
Moore 1959). The celebrated Hu-Tucker algorithm is
hard to prove (Hu & Tucker 1977, see also Knuth 1972
p. 439-u445) despite further simplifications of the
argument (Hu 1973), but it gives Ehe desired tree in
a most interesting manner in 0(n”) time and only
linear space. (The algorithm was programmed by Yohe
1972, see also Byrne 1973). Knuth (1972, p. un4) in-
dicated an 0(n log n)-implementation.

We shall prove that a very good approximation to
an optimal alphabetic tree can be found in only lin-
ear time.

Various authors observed that alphabetic trees
are hard to keep optimal when the weight of records
is updated by run-time information or when records
have to be inserted in alphabetic order or deleted
from the file (see e.g. Bruno & Coffman 1972, Walker
£ Cotlieb 1972, and Nievergelt & Reingold 1972). 1In
this paper we therefore introduce weakly stable
trees which merely achieve an optimal local weight-
balance somewhat in the spirit of ideas of Walker &
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Gotlieb (1972) and Mehlhorn (1975), but with a more
rigid local stability criterion enforced throughout
the tree. Weakly stahle trees are always very close
to optimal.

Usinag a data structure which allows for efficient
SPLITS we will show that there is an algorithm to
construct a weakly stable alphabetic tree in 0(n log
n) steps. The restoration of weakly stable trees
upon insertion or deletion of a record shows an in-
teresting downward propagation of local re-halanc-
ing. We note that Fredman(1975) recently developed a
linear time algorithm for another kind of weight-
balanced search-trees.,.

ALPHABETIC FPUFFMAN - TREES IN THE ORDERED CASE

The ordinary algorithm for optimal Huffman trees
(Muffman 1952, Zimmerman 1959 , Schwartz 1964 ) con-
sists of a repeated "construct-a-subtree and insert-
in-order" cycle and requires 0(n log n) time. We
shall nrove

Theorem 2.1

If records are initially given in order of increas-
ing probability then there is a "stable" linear time
algorithm to construct an optimal alphabetic tree.

Let Wy S oeeee 2w and consider the ordinary
Huffman ~ algorithm. We shall first show that in-
stead of a heap now only a queue is needed to hold
the intermediate information abhout subtree-~ordering.
Assume there is an input-queue IN containing ele-
ments of

type item = record
w : weight;
T : pointer to record r;
end;

and an auxiliary queue Q for elements of

type node = record
w : accumulated weight;
left : pointer to node:
right : pointer to node;
end;

Consider the linked structure produced by

Algorithm A
"initialize"”
attach (W1,ﬂ1),....,(wn,ﬂn) to IN;
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attach 0;
"cycle"

repeat

determine(a,B)e{ (IN+,IN+4), (IN4,0Q4),
(04, O++)}

such that a*w + R-w is minimal;
new (y);
Yow = o'W + Rew;
y+*left := o or B;
Y right := R or a;

delete o and R from their source-queues;
attach v to 0
until IN is empty A #0=1;
"output™
output Q+;

IN remains ordered throughout the algorithm. We
shall prove that it holds for O also.

Lemma 2.2

At any moment in algorithm A we have O+-w < Ottew <
«+«.. (up to the last record in the queue).

Proof. It holds at the beginning and after the
first step. Continue by induction. Suppose it
holds at steps k-1 and k. Consider how step k is
achieved.

Case 1:
at step k-1 we have
= * * %
Q (('{1 ’ )(qzl ).voo. (q], )

and at step k we have

IN = (w, it27 )(wl+3, ) PP

0 = (q1r*) (Qzl*)o---(q]- *) (W +Wl+1r )
where

wl+w +1 2 wita, and Witw, g £ 9q9%4,-

In step k+1 we determine the minimum of

i
{wi+2+wi+3,wi+2+q1,q1+q2} and attach a corresponding

record to O after the record for wi+wi+2

+ < . atw < w.+g., < w. .+ and
RERAE TS Wis2™VWi437Y Wy i+1 = WiT9y S W 4079

witw, < ayta, Q remains ordered no matter which

. Since

i+1
value is smallest.

Case II:
at step k-1 we have
IN = (Wi, *) (wit1,%*) (wig2,*)....
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0 = (q1,%) (qy, %) eeen (qy,*)

and at step k we“have J
IN = (wi+1,*)(wi+2,*)....
= % * *
0 (qz, )....(qj, )(wi+q1, )
where

w.tay < wi+wi+1 and w.tq, < q,+q,

In step k+1 we determine the minimum of {wi+1+

wi+2,wi+1+q2,q2+q3} and attach a corresponding re-
cord to Q after the record for witd,. Since witd, <

Wip1 Wi S VitV Witay S Wy qtay S Wy, 4%9,, and
Witdy < qqtg, < qytday 0 remains ordered no matter
which value is smallest.

Case III:
at step k-1 we have
= * *
IN (wi, )(wi+1, ) B

Q = (q1,*)(qz,*)(q3,*)--.-(qj *)

’

and at step k we have

IN= (Wi,*) (Wi+1,*)....

where

q1+q2 < wi+wi and q1+q2 < wi+qi

+1
In step k+1 we determine the minimum of {wi+wi+1,
wi+q3,q3+qu} and attach a corresponding record to Q
after the record for qq+d,- Since qQqta, < witwe g
aqtd, < witqq < w.td,, and aq+q, < astqy, () remains
ordered no matter which value is smallest.

In all three cases the argument is easily modi-
fied when IN or O have only 3 records or less. )

It is now fairly straightforward to prove that
algorithm A is a stepwise implementation of
Huffman's construction, but the heap normally needed
remains permanently decomposed into two queues.
(Lemma 2.2 is related to an observation of Hu &
Tucker 1971; see also Knuth 1972, n. 450). It follows

Lemma 2.3.

If records are initially given in order of increas-
ing probability, then algorithm A yields an optimal
Huffman tree in linear time.
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If we always choose the record with minimal
weight occurring first in { (IN4,IN44), (IN4,04),
(0+,044)}, then algorithm A yields an optimal
Huffman tree with smallest 1 (Schwartz 19¢4).

It appears that rq,r ,....,§n may still get mixed
up pretty badly in algof¥ithm A." We shall develop a
more precise version in which much of the freedom we
had in combining subtrees is eliminated to keep the
amount of disorder minimal.

Algorithm B will build a two-way (and later dou-
bly linked) tree using elements of

type node = record

w : accumulated weight;
father : pointer to node;
left : pointer to node;
right : pointer to node;
link : pointer to node;
end;

in the following way

Algorithm B
"initialize"

for i ton do L +(wi,-,r ,nil,=);
attach 7 ,....7m_ to IN;
prodiudiustuselinabutel 1 N —
attach Q;
"cycle”
reEeat
determine (o,B8)e{ (IN4,IN44), (INt,Q1),
(of,0r4)}
such that a-w+B-w is minimal;
new (Y);
Y = t(a-w+B-w,-,0,B8,-);
o.father := Bcfather := Yy;

delete o and R from their source-queues;
attach y to 0O;
until IN is empty and #0Q=1;
"output”
output ot
The tree may still not be alphabetic but it now
appears to have a hidden regularity.

Lemma 2.4.

1f records are initially given in order of increas-
ing probability, then algorithm B yields an optimal
Huffman tree in which at each level the occurring
leaves are ordered.

Proof. By induction on the forest obtained by jux-
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taposing the subtrees in Q and IN (in that order)

Wi+ w

S IR .

as the algorithm progresses. We shall prove the
somewhat stronger enumeration—grogertxz when leaves
are enumerated per level from left to right, begin-
ning at the lowest level and going upwards in the
forest, then one precisely gets r1,....,rn in their

original order.
It trivially holds at the beginning

and after the first step

q1 V3 Wn
O @@
/ N\
wf@ €9w2

Assume the hypothesis at step k, and consider
what can happen at step k+1.

Case I: 1if oW, and Bzw, then we get

i+1

WitWitr Yie2 Y
/;q\ e
@ .2
1 Yit

The leaves of the g-trees all occur before Wy in

the original ordering and the enumeration-property
is preserved.

Case II: if azw, and B:q1 then we get

Vi

Mo g0 H
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Instead of going back to the beginning of a next
level we already find the leaves of g, listed imme-
diately following the previous level now, and the
order of enumeration hasn't changed.

Case YII: if azq, and quz then we get

|
i

JER——

The leaves of g, and 9, remain in order, but we
have now attached %hem at“the end one level lower.
The enumeration properly remains therefore true. g

From the proof is clear why the arrangement of
subtrees was chosen the way it was in algorithm B.
The enumeration-property will be used later to show
that the method is stable : equal-weight records
remain in order. -

Examine the "highest" level in the tree where
leaves occur, and assume that all nodes in the level
are linked from left to right into a linear 1list

R e

! v
7 A
7 *® 0 9 s P e s s e e 0 .
/ \
* & & & o & & 2 0 e s

> >&-> O, -> > O

e s o o ® o o ® o s v 0 0 0 50 0 o0 . »

Observe that a transformation of

A B

+@‘*-ooocooooooo..o+ ->

/ouo
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into

B A

-»ﬁ—»................-*@-*

does not affect the weight of the tree. If we al-
ways perform the exchange operation on adjacent
nodes (beginning with the rightmost e-node) we can
let all e-nodes "bubble" to the far right end of the
list and obtain a re-structured level of the form

/{}7{}& o AdS

without changing the enumeration property and with-
out changing the total weiaght of the tree.

If we continue the same procedure at the next
lower level, and the next, and so on, then we bring
the leaves up order more and more without loosing
the enumeration property and optimality, obtaining
in the end the alphabetic ordering we looked for!
Thus we have a constructive proof (as opposed to
Knuth 1968, p. 589) of Schwartz's result that for
wy S Wy <l there 1s an optimal Huffman tree

which is alphabetic.

We still have to show how to perform the trans-
formation procedure quickly. It is clear that we
need an "demerging" algorithm for transforming
linear lists

1TAB2C3 ce e e

0330303230 L .. i eeeee HOFQO>O 4

into
12 3 .. A B
+0-+>0>+0->0~>

*® e o o +o+e+a+ *® & & 2 o o s 0 _*e-*e-*-L.
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Lemma 2.5

Demerging of two-colored linear lists can be per-
formed in linear time and no extra space.
Proof. Assume the list contains elements of

type node = record

info : (black,white);
link : pointer to node;
end

The procedure described below will transform a list
like

list @ --0-2-->0-0+&>0Q >+

Let "list" be a pointer to the beginning of the
list.

Algorithm C

into

w := ( * ,nil):
b := ( * ,nil);
wlist := w;
blist := b:
next = list;
repeat
if next-info = white then wlist<link :=
T next; wlist := next
else blist-link := next;
blist := next Ei;

next := next-+link
until next is nil;
wlist+link := b-link;
list := w-link;

output list;

The algorithm provides a stable "demerging"” in
time proportional to the number of list-elements. a

Demerging could be used to make quicksort stable
(Knuth 1972, p. 114-123; Sedgewick 1975).
Proof of theorem 2.1. First use algorithm B to
build an optimal Huffman tree with the enumeration
property in linear time. Make this tree into a
doubly~linked or "chained" tree
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level after level downwards, which we can in time
proportional to the number of nodes in the tree
(again linear in n). Note that strictly B could
never have a black left-son if algorithm B is exe-
cuted carefully, but one can relax the case (IN+4,Q%t)
without violating the enumeration property. We
shall continue the example as a most general situa-
tion.

Start at the highest level in the tree where
leaves occur, pretend all nodes in the level are
temporarily cut loose from their father in the pre-
vious level

L—1 -> $ee ‘ w«)ewe

L - g»é->&-+%-+>8~ > e .

and demerge level L with algorithm C. Note that we
do not have to restore the cross-links among the
subtrees attached to white nodes due to the stabil-
ity of algorithm C. When algorithm C is completed,
traverse the list in the father-level and in the
present level simultaneously to restore the father-
son links for nodes now in proper order.
The example tree becomes

VI

HOT D0 oelpls £ @y Q@ trct €0

oot O

= (D
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which is equivalent to

Repeat the same procedure at the next lower level
where leaves occur, and continue until the entire
tree is rearranged. This phase takes time propor-
tional to the number of nodes per level, and is
therefore completed in linear time as well. [

HUFFMAN-TREES IN GENERAL AND ALPHABETIC TREES IN
GENERAL

Algorithm A (see 2.3) suggests a new organization of
Huffman's original algorithm to build an optimal

tree for an arbitrary set of records FqrLoreee Ty

with weights w1,w2,...,wn. First sort the records

with a fast (and perhaps stable) procedure and then
apply algorithm A to get an optimal tree within only
a Iinear number of more steps. This organization
shows that in the ordinary algorithm for obtaining
Huffman-trees it isn't really necessary to use a
priority queue because all sorting needed can be
performed by an especially designed routine once and
for all in the beginning.

The algorithm gives an optimal Huffman tree in
0(n log n) steps, but more so than the original al-
gorithm it shows that this bound is mainly needed
for sorting the original set of records. It holds
the clue to an argument that we cannot improve on
0(n log n) in any algorithm for optimal trees that
uses simple primitives.

A binary tree is called skinny if and only if
each internal node has at least one son which is a
leaf. Assume that we have records TyreeesTy with

weights Wy S Wy S eeel < W given in arbitrary
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order, and assume further that each Wy is "much
larger" than Wi qe

Lemma 3.1.
If wj > wj_1 + ...+ W, for 2 < j < n, then any op-

timal Huffman tree for Lyreeorr is necessarily a
skinny tree.
Proof. By induction. Assume the hypothesis for

optimal trees on r1,...,rn_1, and consider all

possible optimal trees on r,,...,r_ under the given
condition. An optimal tree is eitBer of the form

/>T
w
n

and therefore skinny as a whole by induction on T,
or it is of the form

£

and some further analysis is needed.
Since the tree is optimal, w_ must occur in the

first level of the tree containing leaves.

A —
/O\ path-
* ¢ o &8 0 0 0 ¢ o0 length
1 k 1 Y
O * o 8 O ® o & 8 8 0 O

B

® o ¢ 2 0 s 0 08 080 0 e ® 5 6 0 080 02 00 0

w
n

L L L B O LI B O B B Y B B I T R S I I S I I SN S R S Y
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Compare the tree with

A
w path-
n length
® & & o & & & 0 @ 8 e Y+1
1 "k"

1
O..-0 0O.evvv..
5 O

® ¢ ® ¥ 5 0 % 0 B 2P S0 00 CE IV OSSOSO e SN

(with subtree B pulled "up" into node k), and calcu-
late their weights.

Let §(B) equal 0 when B is a leaf and 1 other-
wise. It is easily verified that:

weight first tree - weight second tree =
=y{w_+...+w,) + weight trees 1,./.,l+w _+

n 1 " n

) leaves(B) + & (B)weight (B)
~{w_+(y+1) (w_ .+..+w,)+weight trees 1,./.,1 +

n n-1 1 X

§(B) .weight (B) } =

=yYw -(wn_1+...+w1)+z leaves (B) >
>w_- (w

n
>w n_1+...+w1)+z leaves (B) >
>} leaves(B) > 0

which contradicts minimality of the first tree.
This completes the induction-step. -

From the proof is clear that one can weaken the
condition on the weights to

W. > W.
J

5-1 t oo+ oW, (323)

and still get the result stated.

Suppose there is an algorithm that can produce an
optimal Huffman tree on n records with given weights
in T(n) steps. If we let it operate on a set of

records TqreresX with weights W, < w, < eeee < W

sufficiently far apart (as made precise in 3.1)
initially given in some arbitrary order, then it
must necessarily deliver a skinny tree
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n-1

We only need a linear number of additional steps to
traverse the tree and retrieve the weights in order.
(If the weights w didn't satisfy 3.1, then work with
sufficiently high powers w* instead). It shows that
any algorithm for optimal Huffman trees can be used
for sorting and 0(n log n) must be a lower bound on

T(n) unless rather sophisticated analytlcal tests
are employed in such an algorithm.

It is much harder to give a combinatorial analy-
sis of "good" alphabetic trees. An optimal alphabe-
tic Huffman tree need not be optimal in the original
sense (see e.g. Knuth 1972, p #443). Known algor-
ithms for optimal alphabetic trees therefore use
much less straight-forward iterative constructions,
and are more time consuming than one would like.

Gilbert & Moore (1959; also Knuth 1972, p. 445)
proved that the weighted path-length of an optimal
alphabetic tree is bounded by - ) w, log w, (the

entropy) and - ) w; log w,+2. The upperbound is

constructive. We shall give a simpler combinatorial
construction which yield an almost optimal alpha-
betic tree in linear time. (Fredman 1975 gave linear
time algorithm for certain internally balanced trees
which by Mehlhorn's argument (1975) must have a
weighted path-length close to the entropy also).

Let g be a linearly bounded, integer function
which is #0 for #0-arguments (like [ ]). Make
g(wjn) copies of rj for each j=1,...,n, and build

a binary tree of minimum path—lenqthir log(g(w1n)+
..+g(wnn)) 7. A node is j-critical if and only if
all its descendant leaves carry rj and there is no

node less deep in the tree with that property. Make
it a binary search-tree by assigning queries topdown
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as follows:
(i) for each node of the form

> if X < key(rj) then
j-critical N rj else go right;

(and likewise for or )

~

(ii) for each node of the form

where A is not j-dedicated and neither B nor C are
j-critical, there must be a j-critical node below
B or below C (say, below B). Assign to A:

if x < key (rj) then go left else go right;

(iii) for each node of the form

where neither B nor C are critical, simply assign to
A:

if x < key (rj) then go left else go right;

(iv) nodes not in the previous categories may
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be purged.

The queries always direct the search for x (pre-
sumably = ri) to an i-critical node, and it is ob-
viously the fastest way of identifying it. The
height of the father of an i-critical node is bound-
ed by the smallest t such that dt=0 in the recur-

d -1
rence : d0=g(win), ds=[—§§l——] for s=1,2,..., which

is t=[log(g(w,n)+1)]. The path-length to an i-cri- ,
tical node is bounded by [ log (g (win)+...+g(w n)) 1-

[log(g(win)+1)]+1, but it will normally be less as
the tree condenses while purging the redundant

nodes. log (ax+1)+8

For a>0 let g(x)=2 x, where BX is the

smallest non-negative number needed to make the ex-
ponent integer >0 (thus By<1). The weighted path-
length in the tree obtained is bounded by

n g
gwi{rlog(u+1+2 max)ﬁw—[log(g(win))]+1}i

n Bmax
<Zw.{log(a+1+2 yn-log(aw.n) -8 +21}<

n n
i—%wilog wi+2-;wi8wi+log(1+

n
, 3
< ;wi log wi+2+log(1+a)

By choosing a sufficiently large the bound can be
made arbitrarily close to "the entropy + 2", which
must in turn be very close to optimal.

CONSTRUCTING AND UPDATING WEAKLY STABLE ALPHABETIC
TREES

It appears that optimal alphabetic trees are even
harder to maintain dynamically than ordinary optimal
trees are, and with good reason one may ask for
weaker, yet "good" alphabetic trees which allow more
easily for updates when records are inserted or de-
ljeted or when current weights of records change.

The need was recognized before (see Bruno and Coff-
man 1972; Walker and Gotlieb 1972; Nievergelt and
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Reingold 1972), and the answer was usually found in

"balancing"”. Examine what specific kind of balance

must appear in optimal alphabetic Huffman trees, and
investigate it as a criterion for "near" optimality.
A binary tree is called weakly stable if and only if
there is no local structure

with x > z

or

with x < 2z

Y

w1th x, Y, and z denoting the sum of the weights of

the leaves in the subtree under each particular
node.

Lemma 4.1.

Any optimal alphabetic Huffman tree on n records
must be weakly stable.

Note that there are more stabilities in optimal
trees. For instance, in a local structure

(with x > z)
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one must also have x > y, since otherwise the alpha-
betically equivalent re-structured tree

would beat it. Can similar properties together

yield a combinatorial characterization of optimal
alphabetic trees?

Local rotations

when x > z

A A
c/ + \ when
X 2 when x < 2
Y z X Y

. o . e LI . e

provide a key to stepwise balancing of the tree.
Each such a rotation reduces the current weight of
the tree and it follows that the process must even-
tually terminate at a weakly stable tree, no matter
what sequence of (legal) rotations is chosen. (There
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is apparently no point in rotating when x = z, see
however Appendix ). In principle one could start
with any given tree on a set of records and "trans-
form" 1t but some initial trees are better than
others. Let us begin with a "first approximation"

n-2 n

w+....'+w
1 n
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and so forth, until a configuration

for some 1 < j < n-1.

Lemma 4.2.

Such an index j exists and it is unique (plus or
minus 1).
As in Walker & Gotlieb (1972), the position between

wj and wj+1 may be called the centre. Observe that

the left- and right-subtree of the root are again
similar to the start-configuration and the very same
procedure of rotation may be used to balance these
trees around their root, and so on ...

Wi Y41
The following observation is essential.

Lemma 4.3.

In balancing the subtrees the configuration at the
root remains balanced.
Proof. Denote the original, "balanced" configura-

tion at the root by

« e ™ A A
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" o0 00

Observe what happens if we begin to rotate in the
right subtree

The sum of weights w for the left subtree remains
unchanged, but the value of y can decrease. It
follows that the original inequality w > y cannot go
in the "wrong" direction and always w > y'. The
same argument holds for thé left subtree and it fol-
lows that the root remains in balance. |

Observe that 4.3 holds only because we insisted
on the particular initial organization with a skinny
tree. A straight-forward implementation on a gener-
al purpose computer will require 0(n“) steps, and
mainly so because of all the step-by-step rotations
which one may have to perform. Inefficiency could
be eliminated with a better method to determine
where the centres are.

Assume records (and their weights) given in a
linear list

> O > O -)-.cooc l-0000--+ O +J—
w

Wi 2 Yn

and build a 2-3 tree (see Knuth 1972, p. 468, or Aho,
Hopcroft, and Ullman 1974, Ch. 4) on these nodes in
which internal nodes are records

father | 1.son | m.son | r.son} 1l.1link | r.link| S
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containing direct links to the leftmost and right-
most leaves in the attached subtree and the sum (S)
of the weights at all leaves in that subtree

«“

e

—>—>->+—>+-+->++-> +0O)+0O-+O-O-0»+

W1 ————————————————————— wn

Such a linked tree is easily constructed level after
level bottom-up in only linear time. One can deter-
mine where a centre is by descending down the tree,
each time asking whether the centre is in the left,
middle, or right subtree before descending further.
In order to prove how one can direct the search en-
tirely with local information, consider a typical
situation

lsum w w w w W W, rsum
a b c d e £

where we arrived in R, knowing that the centre must
be inside its subtree. From the previous steps we
know lsum and rsum which gradually accumulated to
their present value.

The centre is right between Wy and W if and only
if

- *
lsum + s, Wy, < S, + s, + rsum (*)

e e

e M adbd 3
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and
lsum + s, > s, - w_ + s; + rsum (**)
(in which case the search can end), but if any of

these inequalities isn't satisfied (one always is)
there can only be two cases:

> in (*), and > in (**):

Then we must rotate back, knowing that the centre
ig iﬂ the tree of A. We must move on to A,
"update™ the local information to

R

lsum w W, rsum:=rsum+s.+s
a b 2 73

and continue the search in the same way

< in (*), and < in (*¥)

Then we know that the centre must lie in B, in
between B and C, or in C, and we can resolve
where it is precisely in the same way as we did
for A.

Lemma 4.4.

The algorithm finds a centre in 0(log n) steps.
Proof. The path-length in a 2-3 tree on n records
is 0(log n), and the amount of work needed at each
node in order to determine the next step downwards
is bounded by a constant. u

Once a centre is found we can create the "top-
most" part of the weakly stable tree
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and repeat the process to find the balanced versions
of the left and right subtree and so on, slowly
working downwards (see lemma 4.3).

In order to continue in a subtree one need not
start all over constructing another 2-3 tree (re-
quiring, possibly, another 0(n) steps again), but
one can split the original 2-3 tree around the
centre that we found and slice 1t into two pieces
(which are again 2-3 trees) which we can use to con-
tinue the construction at the left and at the right.
In the splitting algorithm as described in Aho,
Hopcroft, and Ullman (1974, sect. 4.12) it is no pro-
blem to modify the links and sum values for the
nodes right on the edge. Thus the SPLIT can indeed
be achieved in 0(log n) steps.

Theorem 4.5.

There is an algorithm for producing a weakly stable
alphabetic Huffman-tree on n records in 0(n log n)
steps.

The conclusion is that with a more convenient
data-structure (illustrating the use of 2-3 trees
in programming) we could reduce the complexity to
0(n log n), saving substantially over explicit rota-
tions.

Assume that a weakly stable tree has been build,
and that there is a "small" change in weight at one
of the leaves. One is tempted to restore the bal-
ance by a bottom-up progression of local rotations,
but this may not always be the most efficient way
of doing it and we shall argue why top - down
rebalancing is preferred.

The previous construction does not only give a
weakly stable tree, but at the same time it yields
a second tree which shows abstractly what the loca-
tion of the centres is

Fh ) O PPt o P e Al A A
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and for each centre what the "left-sum" and the
"right-sum" locally are. If we change a weight,
then all centres move a little, and way down in the
lower levels some of the centres may collapse into
one while others may have to be split a few times
more. Transmitting the changes down the tree it
isn't hard to see that a top~down algorithm can re-
compute the centres using the information from the
old tree, and one may re-build the weakly stable,
alphabetic Huffman tree accordingly. It follows
that if the changes aren't radical the centres can
move only a bounded distance and updating the
Huffman-tree takes at most 0 (n) steps. The same
holds for insertion or deletion of a record, and on
the average the behavior may be even better if we
keep a rather homogeneous set of records. For most
practical situations the trees exhibit good dynamic
behavior, thus making the present direction for a
combinatorial characterization of near-optimality in
alphabetic Huffman trees into a subject worthy of
further investigation.
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APPENDIX
We shall here apply the algorithm of section 4 to

produce a weakly stable alphabetic Huffman tree for
the same example used by Hu & Tucker (1971).

Stage 1

62
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Stage 3

It so happens that this tree is weakly stable,
but not optimal: moving "6" up and combining "2"
and "3" one level lower yields a tree with a weight
slightly less. Observe that we could have arrived
at it had we resolved the 14-versus-14 clash in
stage 3 in favor of the left subtree! (It suggests
an explicit strategy is needed for resolving such
situations in the algorithm.)
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