
Chapter 1

APPROACHES IN MACHINE LEARNING

Jan van Leeuwen
Institute of Information and Computing Sciences, Utrecht University,
Padualaan 14, 3584 CH Utrecht, the Netherlands

Abstract
Machine learning deals with programs that learn from experience, i.e. programs
that improve or adapt their performance on a certain task or group of tasks over
time. In this tutorial, we outline some issues in machine learning that pertain to
ambient and computational intelligence. As an example, we consider programs
that are faced with the learning of tasks or concepts which are impossible to
learn exactly in finitely bounded time. This leads to the study of programs that
form hypotheses that are ‘probably approximately correct’ (PAC-learning), with
high probability. We also survey a number of meta-learning techniques such as
bagging and adaptive boosting, which can improve the performance of machine
learning algorithms substantially.

Keywords: Machine learning, computational intelligence, models of learning, concept
learning, learning in the limit, PAC learning, VC-dimension, meta-learning, bag-
ging, boosting, AdaBoost, ensemble learning.

1. Algorithms that Learn

Ambient intelligence requires systems that can learn and adapt, or otherwise
interact intelligently with the environment in which they operate (‘situated in-
telligence’). The behaviour of these systems must be achieved by means of
intelligent algorithms, usually for tasks that involve some kind of learning.
Here are some examples of typical learning tasks:

select the preferred lighting of a room,

classify objects,

recognize specific patterns in (streams of) images,

identify the words in handwritten text,

2 Machine Learning

understand a spoken language,

control systems based on sensor data,

predict risks in safety-critical systems,

detect errors in a network,

diagnose abnormal situations in a system,

prescribe actions or repairs, and

discover useful common information in distributed data.

Learning is a very broad subject, with a rich tradition in computer science and
in many other disciplines, from control theory to psychology. In this tutorial we
restrict ourselves to issues inmachine learning, with an emphasis on aspects
of algorithmic modelling and complexity.

The goal of machine learning is to design programs that learn and/or dis-
cover, i.e. automatically improve their performance on certain tasks and/or
adapt to changing circumstances over time. The result can be a ‘learned’ pro-
gram which can carry out the task it was designed for, or a ‘learning’ pro-
gram that will forever improve and adapt. In either case, machine learning
poses challenging problems in terms of algorithmic approach, data represen-
tation, computational efficiency, and quality of the resulting program. Not
surprisingly, the large variety of application domains and approaches has made
machine learning into a broad field of theory and experimentation [Mitchell,
1997].

In this tutorial, some problems in designinglearning algorithmsare out-
lined. We will especially consider algorithms that learn (or: are trained)on-
line, from examples or data that are provided one at a time. By a suitable
feedback mechanism the algorithm can adjust its hypothesis or the model of
‘reality’ it has so far, before a next example or data item is processed. The cru-
cial question is how good programs can become, especially if they are faced
with the learning of tasks or concepts which are impossible to learn exactly in
finite or bounded time.

To specify a learning problem, one needs a precisemodel that describes
what is to be learned and how it is done, and what measures are to be used in
analysing and comparing the performance of different solutions. In Section 2
we outline some elements of a model of learning that should always be spec-
ified for a learning task. In Section 3 we highlight some basic definitions of
the theory of learning programs that form hypotheses that are ‘probably ap-
proximately correct’ [Kearns and Vazirani, 1994; Valiant, 1984]. In Section 4
we mention some of the results of this theory. (See also [Anthony, 1997].) In

Models of Learning 3

Section 5 we discuss meta-learning techniques, especially bagging and boost-
ing. For further introductions we refer to the literature [Cristianini and Shawe-
Taylor, 2000; Mendelson and Smola, 2003; Mitchell, 1997; Pooleet al, 1998]
and to electronic sources [COLT].

2. Models of Learning

Learning algorithms are normally designed around a particular ‘paradigm’
for the learning process, i.e. the overall approach to learning. A computational
learning model should be clear about the following aspects:

Learner: Who or what is doing the learning. In this tutorial: an algorithm
or a computer program. Learning algorithms may be embedded in more
general software systems e.g. involving systems of agents or may be em-
bodied in physical objects like robots and ad-hoc networks of processors
in intelligent environments.

Domain: What is being learned. In this tutorial: a function, or a concept.
Among the many other possibilities are: the operation of a device, a tune,
a game, a language, a preference, and so on. In the case of concepts, sets
of concepts that are considered for learning are calledconcept classes.

Goal: Why the learning is done. The learning can be done to retrieve a set of
rules from spurious data, to become a good simulator for some physical
phenomenon, to take control over a system, and so on.

Representation:The way the objects to be learned are representedc.q. the
way they are to be represented by the computer program. Thehypotheses
which the program develops while learning may be represented in the
same way, or in a broader (or: more restricted) format.

Algorithmic technology:The algorithmic framework to be used. Among the
many different ‘technologies’ are: artificial neural networks, belief net-
works, case-based reasoning, decision trees, grammars, liquid state ma-
chines, probabilistic networks, rule learning, support vector machines,
and threshold functions. One may also specify the specific learning
paradigm or discovery tools to be used. Each algorithmic technology
has its own learning strategy and its own range of application. There
also aremulti-strategyapproaches.

Information source:The information (training data) the program uses for
learning. This could have different forms: positive and negative exam-
ples (calledlabeled examples), answers to queries, feedback from certain
actions, and so on. Functions and concepts are typically revealed in the
form of labeled instances taken from aninstance space X. One often

4 Machine Learning

identifies a concept with the set of all its positive instances, i.e. with a
subset ofX. An information source may benoisy, i.e. the training data
may have errors. Examples may beclusteredbefore use in training a
program.

Training scenario:The description of the learning process. In this tutorial,
mostlyon-line learningis discussed. In an on-line learning scenario, the
program is given examples one by one, and it recalculates its hypothesis
of what it learns after each example. Examples may be drawn from a
random source, according to some known or unknown probability dis-
tribution. An on-line scenario can also beinteractive, in which case new
examples are supplied depending on the performance of the program
on previous examples. In contrast, in an off-line learning scenario the
program receives all examples at once. One often distinguishes between

- supervised learning:the scenario in which a program is fed ex-
amples and must predict the label of every next example before a
teacher tells the answer.

- unsupervised learning:the scenario in which the program must
determine certain regularities or properties of the instances it re-
ceives e.g. from an unknown physical process, all by itself (without
a teacher).

Training scenarios are typically finite. On the other hand, ininductive
inferencea program can be fed an unbounded amount of data. Inrein-
forcement learningthe inputs come from an unpredictable environment
and positive or negative feedback is given at the end of every small se-
quence of learning steps e.g. in the process of learning an optimal strat-
egy.

Prior knowledge:What is known in advance about the domain, e.g. about
specific properties (mathematical or otherwise) of the concepts to be
learned. This might help to limit the class of hypotheses that the program
needs to consider during the learning, and thus to limit its ‘uncertainty’
about the unknown object it learns and toconvergefaster. The program
may also use it tobias its choice of hypothesis.

Success criteria:The criteria for successful learning, i.e. for determining
when the learning is completed or has otherwise converged sufficiently.
Depending on the goal of the learning program, the program should be
fit for its task. If the program is used e.g. in safety-critical environments,
it must have reached sufficient accuracy in the training phase so it can
decide or predict reliably during operation. A success criterion can be
‘measured’ by means oftest setsor by theoretical analysis.

Models of Learning 5

Performance:The amount of time, space and computational power needed in
order to learn a certain task, and also the quality (accuracy) reached in
the process. There is often a trade-off between the number of examples
used to train a program and thus the computational resources used, and
the capabilities of the program afterwards.

Computational learning models may depend on many more criteria and on
specific theories of the learning process.

2.1 Classification of Learning Algorithms

Learning algorithms are designed for many purposes. Learning algorithms
are implemented in web browsers, pc’s, transaction systems, robots, cars, video
servers, home environments and so on. The specifications of the underlying
models of learning vary greatly and are highly dependent on the application
context. Accordingly, many classifications of learning algorithms exist based
on the underlyinglearning strategy, the type ofalgorithmic technologyused,
the ultimatealgorithmic abilityachieved, and/or theapplication domain.

2.2 Concept Learning

As an example of machine learning we considerconcept learning. Given a
(finite) instance spaceX, a conceptc can be identified with a subset ofX or,
alternatively, with the Boolean functionc(x) that maps instancesx∈ X to 1 if
and only ifx∈ c and to 0 if and only ifx 6∈ c. Concept learning is concerned
with retrieving the definition of a conceptc of a given concept classC, from
a sampleof positive and negative examples. The information source supplies
noise-free instancesx and theirlabels c(x) ∈ (0,1), corresponding to a certain
conceptc. In the training process, the program maintains a hypothesish= h(x)
for c. The training scenario is an example of on-line, supervised learning:

Training scenario: The program is fed labelled instances(x,c(x)) one-by-
one and tries to learn the unknown conceptc that underlies it, i.e. the
Boolean functionc(x) which classifies the examples. In any step, when
given a next instancex ∈ X, the program firstpredictsa label, namely
the labelh(x) based on its current hypothesish. Then it is presented
the true labelc(x). If h(x) = c(x) then h is right and no changes are
made. Ifh(i) 6= c(x) thenh is wrong: the program is said to have made
a mistake. The program subsequentlyrevisesits hypothesish, based on
its knowledge of the examples so far.

The goal is to leth(x) become consistent withc(x) for all x, by a suitable choice
of learning algorithm. Any correcth(x) for c is called aclassifierfor c.

6 Machine Learning

The number of mistakes an algorithm makes in order to learn a concept is
an important measure that has to be minimized, regardless of other aspects of
computational complexity.

Definition 1.1 Let C be a finite class of concepts. For any learning algo-
rithm A and concept c∈C, let MA(c) be the maximum number of mistakes A
can make when learning c, over all possible training sequences for the concept.
Let Opt(C) = minA(maxc∈CMA(c)), with the minimum taken over all learning
algorithms for C that fit the given model.

Opt(C) is the optimum (‘smallest’) mistake bound for learningC. The fol-
lowing lemma shows thatOpt(C) is well-defined.

Lemma 1.2 (Littlestone, 1987) Opt(C)≤ log2(|C|).

Proof. Consider the following algorithmA. The algorithm keeps a listL
of all possible conceptsh∈C that are consistent with the examples that were
input up until the present step.A starts with the list of all concepts inC. If a
next instancex is supplied,A acts as follows:

1 SplitL in sublistsL1 = {d ∈ L|d(x) = 1} andL0 = {d ∈ L|d(x) = 0}. If
|L1| ≥ |L0| thenA predicts 1, otherwise it predicts 0.

2 If a mistake is made,A deletes fromL every conceptd which givesx the
wrong label, i.e. withd(x) 6= c(x).

The resulting algorithm is called the ‘Halving’ or ‘Majority’ algorithm. It is
easily argued that the algorithm must have reducedL to the concept to be found
after making at mostlog2(|C|) mistakes. 2

Definition 1.3 (Gold, 1967) An algorithm A is said to identify the con-
cepts in Cin the limit if for every c∈C and every allowable training sequence
for this concept, there is a finite m such that A makes no more mistakes after
the mth step. The class C is said to be learnable in the limit.

Corollary 1.4 Every (finite) class of concepts is learnable in the limit.

3. Probably Approximately Correct Learning

As a further illustration of the theory of machine learning, we consider the
learning problem for concepts that are impossible to learn ‘exactly’ in finite
(bounded) time. In general, insufficient training leads to weak classifiers. Sur-
prisingly, in many cases one can give bounds on the size of the training sets
that are needed to reach a goodapproximationof the concept, with high prob-
ability. This theory of ‘probably approximately correct’ (PAC) learning was
originated by Valiant [Valiant, 1984] in 1984, and is now a standard theme in
computational learning.

Probably Approximately Correct Learning 7

3.1 PAC Model

Consider any concept classC and its instance spaceX. Consider the general
case of learning a conceptc∈C. A PAC learning algorithm works by learning
from instances which are randomly generated upon the algorithm’s request by
an external source according to a certain (unknown) distributionD and which
are labeled (+ or −) by an oracle (a teacher) that knows the conceptc. The
hypothesish after m steps is a random variable depending on the sample of
sizem that the program happens to draw during a run. The performance of
the algorithm is measured by the bound onm that is needed to have a high
probability thath is ‘close’ toc regardless of the distributionD.

Definition 1.5 The error probability of h w.r.t. concept c is: Errc(h) =
Prob(c(x) 6= h(x)) = ‘the probability that there is an instance x∈ X that is
classified incorrectly by h’.

Note that in the common case that alwaysh⊆ c, Errc(h) = Prob(x∈ c∧x 6= h).
If the ‘measure’ of the set of instances on whichh errs is small, then we callh
ε-good.

Definition 1.6 A hypothesis h is said to beε-good for c∈C if the proba-
bility of an x∈ X with c(x) 6= h(x) is smaller thanε: Err c(h)≤ ε.

Observe that different training runs, thus different samples, can lead to very
different hypotheses. In other words, the hypothesish is a random variable
itself, ranging over all possible concepts∈C that can result from samples ofm
instances.

3.2 When are Concept Classes PAC Learnable

As a criterion for successful learning one would like to take:Errc(h) ≤ ε
for everyh that may be found by the algorithm, for a predefined toleranceε. A
weaker criterion is taken, accounting for the fact thath is a random variable.
Let ProbS denote the probability of an event taken over all possible samples of
m examples. The success criterion is that

ProbS (Errc(h)≤ ε)≥ 1−δ,

for predefined and presumably ‘small’ tolerancesε andδ. If the criterion is
satisfied by the algorithm, then its hypothesis is said to be ‘probably approxi-
mately correct’, i.e. it is ‘approximately correct’ with probability at least 1−δ.

Definition 1.7 (PAC-learnable) A concept class C is said to bePAC-
learnableif there is an algorithm A that follows the PAC learning model such
that

8 Machine Learning

for every0< ε,δ < 1 there exists an m such that for every concept c∈C
and for every hypothesis h computed by A after sampling m times:

ProbS (h is ε-good for c)≥ 1−δ,

regardless of the distributionD over X.

As a performance measure we use the minimum sample sizem needed to
achieve success, for given tolerancesε,δ > 0.

Definition 1.8 (Efficiently PAC-learnable) A concept class C is
said to beefficiently PAC-learnableif, in the previous definition, the learning
algorithm A runs in time polynomial in1ε and 1

δ (and ln |C| if C is finite).

The notions that we defined can be further specialized, e.g. by adding con-
straints on the representation ofh. The notion of efficiency may then also
include a term depending on the size of the representation.

3.3 Common PAC Learning

LetC be a concept class andc∈C. Consider a learning algorithmA and ob-
serve the ‘probable quality’ of the hypothesish thatA can compute as a func-
tion of the sample sizem. Assume thatA only considersconsistenthypotheses,
i.e. hypothesesh that coincide withc on all examples that were generated, at
any point in time. Clearly, asm increases, we more and more ‘narrow’ the
possibilities forh and thus increase the likelihood thath is ε-good.

Definition 1.9 After some number of samples m, the algorithm A is said
to beε-closeif for every (consistent) hypothesis h that is still possible at this
stage: Errc(h)≤ ε.

Let the total number of possible hypothesesh thatA can possibly consider
be finite and bounded byH.

Lemma 1.10 Consider the algorithm A after it has sampled m times. Then
for any0 < ε < 1:

ProbS (A is notε-close) < He−εm.

Proof.
After m random drawings,A fails to beε-close if there is at least one pos-

sible consistent hypothesish left with Errc(h) > ε. Changing the perspective
slightly, it follows that:

ProbS (A is not ε-close) =

Classes of PAC Learners 9

= ProbS (afterm drawings there is a consistenth with Errc(h) > ε)≤
≤ ∑h with Errc(h) > ε ProbS (h is consistent) =

= ∑h with Errc(h) > ε ProbS (h correctly labels allm instances)≤

≤ ∑h with Errc(h) > ε(1− ε)m≤

≤ ∑h with Errc(h) > ε e−εm≤

≤ He−εm,

where we use that(1− t)≤ et . 2

Corollary 1.11 Consider the algorithm A after it has sampled m times,
with h any hypothesis it can have built over the sample. Then for any0< ε < 1:

ProbS (h is ε-good)≥ 1−He−εm.

4. Classes of PAC Learners

We can now interpret the observations so far. LetC be a finite concept class.
As we only consider consistent learners, it is fair to assume thatC also serves
as the set of all possible hypotheses that a program can consider.

Definition 1.12 (Occam-algorithm) An Occam-algorithmis any on-
line learning program A that follows the PAC-model such that (a) A only out-
puts hypotheses h that are consistent with the sample, and (b) the range of the
possible hypotheses for A is C.

The following theorem basically says that Occam-algorithms are PAC-
learning algorithms, at least for finite concept classes.

Theorem 1.13 Let C be finite and learnable by an Occam-algorithm A.
Then C is PAC-learnable by A. In fact, a sample size M with

M >
1
ε
(ln

1
δ

+ ln|C|)

suffices to meet the success criterion, regardless of the underlying sampling
distributionD.

Proof.
Let C be learnable byA. The algorithm satisfies all the requirements we

need. Thus we can use the previous Corollary to assert that afterA has drawn
m samples,

ProbS (h is ε-good)≥ 1−He−εm≥ 1−δ,

10 Machine Learning

provided thatm> 1
ε (ln

1
δ + ln|C|). ThusC is PAC-learnable byA. 2

The sample size for an Occam-learner can thus remain polynomially
bounded in1

ε , 1
δ and ln|C|. It follows that, if the Occam-learner makes only

polynomially many steps per iteration, then the theorem implies thatC is even
efficientlyPAC-learnable.

While for many concept classes one can show that they are PAC-learnable,
it appears to be much harder sometimes to prove efficient PAC-learnability.
The problem even hides in an unexpected part of the model, namely in the
fact that it can beNP-hard to actually determine a hypothesis (in the desired
representation) that is consistent with all examples from the sample set.

Several other versions of PAC-learning exist, including versions in which
one no longer insists that the probably approximate correctness holds under
every distributionD.

4.1 Vapnik-Chervonenkis Dimension

Intuitively, the more complex a concept is, the harder it will be for a pro-
gram to learn it. What could be a suitable notion of complexity to express
this. Is there a suitable characteristic that marks the complexity of the concepts
in a concept classC. A possible answer is found in the notion of Vapnik-
Chervonenkis dimension, or simply VC-dimension.

Definition 1.14 A set of instances S⊆ X is said to be ‘shattered’ by con-
cept class C if for every subset S′ ⊆ S there exists a concept c∈C which sepa-
rates S′ from the rest of S, i.e. such that

c(x) =
{

+ if x ∈ S′,
− if x ∈ S−S′.

Definition 1.15 (VC-dimension) The VC-dimension of a concept class
C, denoted by VC(C), is the cardinality of the largest finite set S⊆ X that is
shattered by C. If arbitrarily large finite subsets of X can be shattered, then
VC(C) = ∞.

VC-dimension appears to be related to the complexity of learning. Here
is a first connection. Recall thatOpt(C) is the minimum number of mistakes
that any program must make in the worst-case, when it is learningC in the
limit. VC-dimension plays a role in identifying hard cases: it is lowerbound
for Opt(C).

Theorem 1.16 (Littlestone, 1987) For any concept class C:
VC(C)≤Opt(C).

VC-dimension is difficult, even NP-hard to compute, but has proved to be an
important notion especially for PAC-learning. Recall that finite concept classes

Meta-Learning Techniques 11

that are learnable by an Occam-algorithm, are PAC-learnable. It turns out that
this holds forinfiniteclasses also, provided their VC-dimension is finite.

Theorem 1.17 (Vapnik, Blumer et al.) Let C be any concept class and
let its VC-dimension be VC(C) = d < ∞. Let C be learnable by an Occam-
algorithm A. Then C is PAC-learnable by A. In fact, a sample size M with

M >
γ
ε
(ln

1
δ

+d ln
1
ε
)

suffices to meet the success criterion, regardless of the underlying sampling
distributionD, for some fixed constantγ > 0.

VC-dimension can also be used to give a lowerbound on the required sample
size for PAC-learning a concept class.

Theorem 1.18 (Ehrenfeucht et al.) Let C be a concept class and let
its VC-dimension be VC(C) = d < ∞. Then any PAC-learning algorithm for
C requires a sample size of at least M= Ω(1

ε (log1
δ + d)) to meet the success

criterion.

5. Meta-Learning Techniques

Algorithms that learn concepts may perform poorly because e.g. the avail-
able training (sample) set is small or better results require excessive running
times. Meta-learning schemes attempt to turn weak learning algorithms into
better ones. If one has several weak learners available, one could apply all of
them and take the best classifier that can be obtained by combining their re-
sults. It might also be that only one (weak) learning algorithm is available. We
discuss two meta-learning techniques: bagging, and boosting.

5.1 Bagging

Bagging [Breiman, 1996] stands for ‘bootstrapaggregating’ and is a typ-
ical example of anensembletechnique: several classifiers are computed and
combined into one. LetX be the given instance (sample) space. Define a boot-
strap sample to be any sampleX′ of some fixed sizen obtained by samplingX
uniformly at randomwith replacement, thus with duplicates allowed. Applica-
tions normally haven= |X|. Bagging now typically proceeds as follows, using
X as the instance space.

For s= 1, . . . ,b do:

– construct a bootstrap sampleXs

– train the base learner on the sample spaceXs

12 Machine Learning

– let the resulting hypothesis (concept) behs(x) : X→{−1,+1}.

Output as ‘aggregated’ classifier:

hA(x) = the majority vote of thehs(x) for s= 1. . .b.

Bagging is of interest because bootstrap samples can avoid ‘outlying’ cases
in the training set. Note that an elementx ∈ X has a probability of only 1−
(1− 1

n)n ≈ 1− 1
e ≈ 63% of being chosen into a givenXs. Other bootstrapping

techniques exist and, depending on the on the application domain, other forms
of aggregation may be used. Bagging can be very effective, even for small
values ofb (up to 50).

5.2 Boosting Weak PAC Learners

A ‘weak’ learning algorithm may be easy to design and quickly trained,
but it may have a poor expected performance. Boosting refers to a class of
techniques for turning such algorithms into arbitrarily more accurate ones.

Boosting was first studied in the context of PAC learning [Schapire, 1990].
Suppose we have an algorithmA that learns conceptsc∈C, and that has the
property that for someε < 1

2 the hypothesish that is produced always satisfies
ProbS (h is ε-good forc) ≥ γ, for some ‘small’γ > 0. One can boostA as
follows. Call A on the same instance spacek times, withk such that(1−
γ)k ≤ δ

2. Let hi denote the hypothesis generated byA during thei-th run. The
probability thatnoneof the hypotheseshi found isε-good forc is at mostδ

2.
Considerh1, . . . ,hk and test each of them on a sample of sizem, with mchosen
large enough so the probability that theobservederror on the sample is not
within ε from Errc(hi) is at most δ

2k, for eachi. Now output the hypothesish=
hi that makes thesmallestnumber of errors on its sample. Then the probability
thath is not 2ε-good forc is at most:δ

2 + k · δ
2k = δ. Thus,A is automatically

boosted into a learner with a much better confidence bound. In general, one
can even relax the condition onε.

Definition 1.19 (Weak PAC-learnable) A concept class C is said
to beweakly PAC-learnableif there is an algorithm A that follows the PAC
learning model such that

for some polynomials p,q and0 < ε0 = 1
2−

1
p(n) there exists an m such

that for every concept c∈C and for every hypothesis h computed by A
after sampling m times:

ProbS (h is ε0-good for c)≥ 1
q(n)

,

regardless of the distributionD over X.

Meta-Learning Techniques 13

Theorem 1.20 (Schapire) A concept class is (efficiently) weakly PAC-
learnable if and only if it is (efficiently) PAC-learnable.

A different boosting technique for weak PAC learners was given by Freund
[Freund, 1995] and also follows from the technique below.

5.3 Adaptive Boosting

If one assumes that the distributionD over the instance space is not fixed
and that one can ‘tune’ the sampling during the learning process, one might
use training scenarios for the weak learner where a larger weight is given to
examples on which the algorithm did poorly in a previous run. (Thus outly-
ers are not circumvented, as opposed to bagging.) This has given rise to the
‘adaptive boosting’ or AdaBoost algorithm, of which various forms exist (see
e.g. [Freund and Schapire, 1997; Schapire and Singer, 1999]). One form is the
following:

Let the sampling space beY = {(x1,c1), . . .(xn,cn)} with xi ∈ X and
ci ∈ {−1,+1} (ci is the label of instancexi according to conceptc).

Let D1(i) = 1
n (the uniform distribution).

For s= 1, . . . ,T do:

– train the weak learner while sampling according to distributionDs

– let the resulting hypothesis (concept) behs

– chooseαs (we will later see thatαs≥ 0)

– update the distribution for sampling

Ds+1(i)←
Ds(i)e−αscihs(xi)

Zs

whereZs is a normalization factor chosen soDs+1 is a probability
distribution onX.

Output as final classifier:hB(x) = sign(∑T
s=1 αshs(x)).

The AdaBoost algorithm contains weighting factorsαs that should be chosen
appropriately as the algorithm proceeds. Once we know how to choose them,
the values ofZs = ∑n

i=1 Ds(i)e−αscihs(xi) follow inductively. A key property is
the following bound on the error probabilityErruni f orm(hB) of hB(x).

14 Machine Learning

Lemma 1.21 The error in the classifier resulting from the AdaBoost algo-
rithm satisfies:

Erruni f orm(hB)≤
T

∏
s=1

Zs.

Proof.
By induction one sees that

DT+1(i) = D1
e−∑sαsci hs(xi)

∏sZs
= e−ci ∑sαshs(xi)

n·∏sZs
,

which implies that

1
n ·e

−ci ∑sαshs(xi) = (∏T
s=1Zs)DT+1(i).

Now consider the term∑sαshs(xi), whose sign determines the value ofhB(xi).
If hB(xi) 6= ci , thenci ·∑sαshs(xi)≤ 0 and thuse−ci ∑sαshs(xi) ≥ 1. This implies
that

Erruni f orm(hB) = 1
n|{i|hA(xi) 6= ci}| ≤ 1

n ∑i e
−ci ∑sαshs(xi) =

∑i(∏T
s=1Zs)DT+1(i) = ∏T

s=1Zs.

2

This result suggests that in every round, the factorsαs must be chosen such that
Zs is minimized. Freund and Schapire [Freund and Schapire, 1997] analysed
several possible choices. Letεs = ErrDs(hs) = ProbDs(hs(x) 6= c(x)) be the
error probability of thes-th hypothesis. A good choice forαs is

αs =
1
2

ln(
1− εs

εs
).

Assuming, as we may, that the weak learner at least guarantees thatεs≤ 1
2, we

haveαs≥ 0 for all s. Bounding theZs one can show:

Theorem 1.22 (Freund and Schapire) With the given choice ofαs,
the error probability in the classifier resulting from the AdaBoost algorithm
satisfies:

Erruni f orm(hB)≤ e−2∑s(
1
2−εs)2

.

Let εs < 1
2−θ for all s, meaning that the base learner is guaranteed to be at least

slightly better than fully random. In this case it follows thatErruni f orm(hB) ≤
e−2θ2T and thus AdaBoost gives a result whose error probability decreases ex-
ponentially withT, showing it is indeed a boosting algorithm.

The AdaBoost algorithm has been studied from many different angles. For
generalizations and further results see [Schapire, 2002]. In recent variants one

Conclusion 15

attempts to reduce the algorithm’s tendency to overfit [Kwek and Nguyen,
2002]. Breiman [Breiman, 1999] showed that AdaBoost is an instance of a
larger class of ‘adaptivereweighting andcombining’ (arcing) algorithms and
gives a game-theoretic argument to prove their convergence. Several other
adaptive boosting techniques have been proposed, see e.g. Freund [Freund,
2001]. An extensive treatment of ensemble learning and boosting is given by
e.g. [Meir and R-atsch, 2003].

6. Conclusion

In creating intelligent environments, many challenges arise. The supporting
systems will be ‘everywhere’ around us, always connected and always ‘on’,
and they permanently interact with their environment, influencing it and being
influenced by it. Ambient intelligence thus leads to the need of designing pro-
grams that learn and adapt, with a multi-medial scope. We presented a number
of key approaches in machine learning for the design of effective learning al-
gorithms.Algorithmic learning theoryanddiscovery scienceare rapidly devel-
oping. These areas will contribute many invaluable techniques for the design
of ambient intelligent systems.

References

M. Anthony. Probabilistic analysis of learning in artificial neural networks: the
PAC model and its variants. In:Neural Computing SurveysVol 1, 1997, pp.
1-47 (see also: http://www.icsi.berkeley.edu/ jagota/NCS).

A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability and
the Vapnik-Chervonenkis dimension.Journal of the ACM36 (1989) 929-
965.

L. Breiman. Bagging predictors.Machine Learning24 (1996) 123-140.
L. Breiman. Prediction games and arcing algorithms.Neural Computation11

(1999) 1493-1517.
COLT. Computational learning theory resources.website at

http://www.learningtheory.org.
N. Cristianini, J. Shawe-Taylor.Support vector machines and other kernel-

based learning methods. Cambridge University Press, Cambridge (UK),
2000.

A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound
on the number of examples needed for learning.Information and Computa-
tion 82 (1989) 247-261.

Y. Freund. Boosting a weak learning algorithm by majority.Information and
Computation121 (1995) 256-285.

Y. Freund. An adaptive version of the boost by majority algorithm.Machine
learning43 (2001) 293-318.

16 Machine Learning

Y. Freund, R.E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting.Journal of Computer and Systems Sci-
ences55 (1997) 119-139.

E.M. Gold. Language identification in the limit.Information and Control10
(1967) 447-474.

M.J. Kearns and U.V. Vazirani.An introduction to computational learning the-
ory. The MIT Press, Cambridge, MA, 1994.

S. Kwek, C. Nguyen.iBoost: boosting using aninstance-based exponential
weighting scheme. In: T. Elomaa, H. Mannila, and H. Toivonen (Eds.),
Machine Learning: ECML 2002, Proc. 13th European Conference, Lecture
Notes in Artificial Intelligence vol 2430, Springer-Verlag, Berlin, 2002, pp.
245-257.

N. Littlestone. Learning quickly when irrelevant attributes abound: a new
linear-threshold algorithm.Machine Learning2 (1987) 285 - 318.

R. Meir and G. R-atsch. An introduction to boosting and leveraging. In: S.
Mendelson and A.J. Smola (Eds),ibid, pp 118-183.

S. Mendelson, A.J. Smola (Eds).Advanced lectures on machine learning. Lec-
ture Notes in Artificial Intelligence vol 2600, Springer-Verlag, Berlin, 2003.

T.M. Mitchell. Machine learning. WCB/McGraw-Hill, Boston, MA, 1997.
G. Paliouras, V. Karkaletsis, and C.D. Spyropoulos (Eds.).Machine learning

and its applications, Advanced Lectures. Lecture Notes in Artificial Intelli-
gence vol 2049, Springer-Verlag, Berlin, 2001.

D. Poole, A. Mackworth, and R. Goebel.Computational intelligence - a logical
approach. Oxford University Press, New York, 1998.

R.E. Schapire. The strength of weak learnability.Machine learning5 (1990)
197-227.

R.E. Schapire. The boosting approach to machine learning - An overview. In:
MSRI Workshop on Nonlinear Estimation and Classification, 2002 (avail-
able at: http://www.research.att.com/ schapire/publist.html).

R.E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated
predictions.Machine Learning37 (1999) 297-336.

M. Skurichina, R.P.W. Duin. Bagging, boosting and the random subspace
method for linear classifiers.Pattern Analysis & Applications5 (2002) 121-
135.

L.G. Valiant. A theory of the learnable. Comm. ACM 27 (1984) 1134-1142.

