
Understanding Computation
A General Theory of Computational Processes

Jan van Leeuwen

Jiř́ı Wiedermann

Technical Report UU-CS-2019-012

December 2019

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

Princetonplein 5

3584 CC Utrecht

The Netherlands

Understanding Computation?

A General Theory of Computational Processes

Jan van Leeuwen1 Jǐŕı Wiedermann2

1 Dept. of Information and Computing Sciences, Utrecht University,
Princetonplein 5, 3584 CC Utrecht, the Netherlands

J.vanLeeuwen1@uu.nl
2 Institute of Computer Science, Academy of Sciences of the Czech Republic,

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic
jiri.wiedermann@cs.cas.cz

“All machinery can be regarded as continuous”
A.M. Turing [42], 1948

Abstract. The notion of computation is well understood, and well formalized,
in the classical context of digital information processing. However, the paradigm
of computation is increasingly used in the characterization of processes in sci-
ences like physics and biology as well. This seems to recognize computation
more broadly as an ‘elementary mechanism of nature’, not limited to the digital
domain. What is computation, if it is observed in this broader sense? Without
computers as the single defining mechanism, classical abstractions like Turing
machines and rewrite systems seem to be unsuited to capture its newer mean-
ings. Following our epistemic approach, we develop a new framework for under-
standing computation and, as a consequence, for understanding computational
processes, based on observed trajectories (curves) of computational activity in
suitable metric spaces. With computational processes rather than all sorts of
different models of computation as the core abstraction, one can model and
characterize many aspects of computation as a mathematical object, from com-
position to computational and structural complexity. Discrete computations ap-
pear as projections of continuous ones, clarifying a complex issue from Turing’s
1948 report. We present both the philosophy and a first outline of the implied,
machine-independent, general mathematical theory of computation.

Keywords: computation, computational processes, dynamical systems, epis-
temic theory, metric spaces, philosophy of computing, topology.

Contents:

1 Introduction
1.1 Re-investigating computation

Matching models
1.2 What computations do

Revisiting Turing’s 1948 report
Computational processes

1.3 Overview
Organization of this report

2 Philosophical considerations
2.1 Cornerstones

? Version dated: December 3, 2019. This work was partially supported by ICS CAS fund
RVO 67985807, CAS Programme Strategy 21, and the Karel Čapek Center for Values in
Science and Technology (Prague, Czech Republic).

2 J. van Leeuwen and J. Wiedermann

Actors and spectators
Epistemic theory
Reflection

2.2 What computations are
Computational processes
General theory of computation

2.3 Cross connections
Computational vs. dynamical systems
Trace theory

2.4 Towards a topological framework

3 Computation - concepts and definitions
3.1 Essential spaces and maps

Action spaces
Knowledge spaces
Semantic maps

3.2 Computational processes and computations
What a computational process is
What a computation is
Constraints
Causal aspects
Definitional aspects
Semantic aspects

3.3 What computations compute
3.4 Mappings between computational processes

Basic maps
Epistemorphisms
Homomorphisms

3.5 Determinacy

4 Computation - examples
4.1 Finite-state systems
4.2 Analog computers
4.3 Reasoning
4.4 Reflection

5 Operations on computational processes and computations
5.1 Re-timing computations
5.2 Switching and composing computations
5.3 Composing processes
5.4 Combining knowledge sets
5.5 Generating knowledge by expansion

6 Symbolic prototypes of computational processes
6.1 Symbolic prototyping

Symbolic knowledge spaces
Symbolic process

6.2 From symbolic prototype to computational process
6.3 From computational process to symbolic prototype

7 Observing computations
7.1 Repeatable processes
7.2 Discrete processes

8 Continuous vs. discrete computation
8.1 Discrete processing and computation

Tolerance systems
8.2 Computational discrete processing systems

9 Discrete computation
9.1 Projections
9.2 Faithful computations
9.3 Codable processing systems

Understanding Computation 3

9.4 Discrete processing systems - examples

State-based systems

Internet searching

9.5 Reflection

10 Functional processes and step-generation

10.1 Functions from repeatable processes

Computable functions

10.2 Steps in operationally discrete processes

Characteristic properties

Extension

10.3 Step-functions and their iteration

Step functions

10.4 Step-generating processes

Differentiability

Existence of step generating processes

10.5 Reflection

11 Complexity of computational processes

11.1 Stabilizing computations

Knowledge by stabilization

11.2 Loop condensation

Simplifying loops

11.3 Structural complexity

Structural effects

Compactness

11.4 Computational complexity

General properties

Interpretation

Finite complexity

Measuring computations

11.5 When are properties knowable

12 Some conclusions

Computational processes

Computation

Some open problems

References

1 Introduction

Computation is traditionally understood to refer to the calculatory actions of a
human computer and, by extension, to anything that can essentially be reduced
to this. This view was well-formalized by Turing and in many later studies, and
it is well-recognized since. Computation is now routinely associated with the
action of electronic computers. However, the language of computation is increas-
ingly being used to describe the functioning of processes in physics and biology
as well, and these processes may neither be discrete nor obviously algorithmic
by our common understanding. As computers are no longer the single defining
mechanism, classical abstractions like Turing machines or rewrite systems seem
less and less appropriate to define computation in the general way it is now
understood. The philosophical question arises whether a more encompassing
theory could be given. What is it that computations do?

4 J. van Leeuwen and J. Wiedermann

1.1 Re-investigating computation

The question to re-investigate the core notions of computation has emerged in
all kinds of contexts before, especially in established domains of computing. A
good example is modern ‘scientific computation’ for which a real of algebraic
model of computation seems far more suitable (cf. Blum et al. [7]). Also, from
a programming perspective, the logic-based model of abstract state machines
(cf. Gurevich [20]) seems to give a much more viable view of how a computa-
tion proceeds and, thus, can be specified. Additional phenomena that arise in
practice like interaction (reactivity), unboundedness of operation and program
evolution have all been added to the regular Turing machine model, to obtain
models that are deemed more natural for studying modern computations [47].

Matching models As a general guideline, Aho [1] suggested that computa-
tion must be defined in conjunction with a precise model of computation which
matches the problem one wants to study. For example, the computational phe-
nomena that one wants to study may be captured by some hybrid model, whose
meaning and operations can be defined beyond doubt. Depending on the na-
ture of the model, this might focus attention on the operation and complexities
of the chosen model rather than on the nature of the computation it achieves.
Examples of how this can be done differently can be seen in e.g. Blum’s machine-
independent theory of discrete computation [6] or in Valiant’s general approach
to parallel computation [43].

A good impression of the many different approaches to the notion of compu-
tation as found today, is given in the contributions to the Ubiquity Symposium
in 2010, see Denning [15]. These witness the gradual transition in thinking about
the notion, from ‘computation by machines’ to ‘computation by processes’, al-
lowing for a much greater flexibility in matching it to our newer understandings
of it. In our present analysis, this still lacks uniformity and focus on the core
notion of computation.

1.2 What computations do

The repeated adjustments of standard models of computation to the develop-
ments in computing architectures, have renewed the quest for understanding the
core concept of computing that underlies it. The question is: is there an over-
arching model of computation that emphasizes computation, without having to
resort to a fixed model of the underlying software or hardware?

In 2013 we developed a very different philosophy of computation, focusing on
‘what computations do’ (for us) rather than on ‘how their underlying mechanism
achieves it’ [48, 50]. We elaborate on this approach below. Before we go into
detail, the question arises how one can abstract from an underlying mechanism
here altogether.

Revisiting Turing’s 1948 report It has long been recognized that there can
be great differences in the functioning of computing machines, presumably with
non-trivial consequences for understanding them. In 1948, Turing already de-
scribed different - what he called - ‘varieties of machinery’ from this perspective

Understanding Computation 5

[42]. In particular, Turing described the apparent dichotomy between discrete
and continuous machinery which is so often seen, as follows ([42], p. 3):

We may call a machine ‘discrete when it is natural to describe its possible states as

a discrete set, the motion of the machine occurring by jumping from one state to

another. The states of ‘continuous machinery on the other hand form a continuous

manifold, and the behaviour of the machine is described by a curve on this manifold.

All machinery can be regarded as continuous, but when it is possible to regard it as

discrete it is usually best to do so.

Interestingly, the description of the dichotomy holds the key to its resolution, if
one accepts the view that ‘all machinery can be regarded as continuous’. With
the notable exception of [19], this idea seems not to have been followed up so
far in the theory of computation. As discrete and continuous machinery are
omnipresent in all of the systems we study today, we have to resolve the noted
dichotomy in our overarching model of computation if it is to prove its worth.

In view of his 1948 report, one wonders whether Turing would have consid-
ered his model of computation from 1936 [41] as a proper basis for understand-
ing the notion of ‘machinery’ which he is now referring to. It is a tantalizing
thought that he might not have.

Computational processes In order to understand computation, we have to
assume that a spectator can observe the behaviour of a substrate that underlies
it. Without requiring any detail, we will assume that the behaviour we want
to understand as being computation, is being generated by a computational
process (or agent). Effectively this means that we need to understand what
computational processes do as much as what computations do, with as little
detail as possible of ‘how’ processes do what they do to cloud the issue.

The connection of computations to processes rather than machines is well-
known, but this has not led beyond the traditional theories of computing before.
The framework we develop can be seen as answering a fundamental question of
Frailey [17] which calls for a theory of computational processes as a prerequi-
site for the true understanding of computation. We fully subscribe to Frailey’s
motivation for this when he writes:

Why should we equate process and computation? If we did so we would overcome

the ”mathematicians bias” and deal with the complete scope of what computation

has come to include. [. . .] We could develop a theory of processing analogous to our

current theory of computation. Such a theory would be a better fit to the reality of

what computation truly entails. Whether natural or artificial; mechanical, electrical

or biological; described by a formal model or simply occurring naturally and in need

of a formal description; processes should be the focus of our attention when we try to

understand computation.

If we adopt this view, the question of understanding ‘what computations do’
reduces to the question of developing an appropriate theory of computational
processes. In doing so, one requirement must then be upheld, namely that such
a theory does not resort to any special model of the underlying software or
hardware.

6 J. van Leeuwen and J. Wiedermann

1.3 Overview

The overarching model we aim for will have to abstract from many features that
are manifest in current computing systems. Moreover, we want the framework
to be suited for understanding both natural and artefactual systems that we
want to include as being computational.

To achieve our aim, we will develop a more general view of computing ma-
chinery than Turing’s, to bring out the intrinsic meaning of computation in any
context. We base our approach on the epistemic theory to computation which
we developed prior to the present work [48, 50]. We use it to devise a novel
theory of computational processes that leads us to understand computation ir-
respective of how the underlying process achieves it. The theory may be seen
as a concretization of the uniform framework for computational machinery as
it was alluded to in Turing’s 1948 report [42].

With computational processes rather than all sorts of models of computa-
tion as the core abstraction, one can model and characterize many aspects of
computation, from composition to computational and structural complexity. A
very preliminary version of this report was presented in [45]. Here we present
both the underlying philosophy and a first outline of the implied, generalized
mathematical theory of computation in detail.

Organization of this report In Section 2 we unfold the philosophical consid-
erations that underpin our approach and that eventually lead us to the general
view of computation that we have alluded to above. As an immediate follow-up
on these considerations, Section 3 provides the key abstractions for defining
and studying computations and computational processes in a mathematically
precise manner. In Section 4 we give a series of examples that aim to illustrate
the extensiveness of our approach. In Section 5 we show that the framework
allows us to treat computational processes as mathematical objects, and that
it enables us to distinguish and define many realistic features of processes in a
natural way, including issues such as re-timing and composition. In Section 6
we show that every computational process has a symbolic ‘prototype’ that pre-
cisely characterizes what the given computations of the process can maximally
accomplish when different observers, with different interpretations of what they
see, observe them.

In the later sections of this report, we will develop a ‘theory of computa-
tion’ for the general notion of computation that we propose. In Section 7 we
consider what it means to ‘observe’ computations and when computational pro-
cesses may be regarded as operationally or observationally discrete processes. In
Section 8 we close in on Turing’s claim and consider the relationship between,
what we will call, ‘discrete processing systems’ and ‘continuous computational
processes’. In Section 9 we will prove that, under mild assumptions, any ‘dis-
crete processing system’ as commonly considered in computing can be viewed
as the rendering of a general computational process as we define it, with special
properties. This clarifies the apparent dichotomy in the view of ‘machinery’ in
Turing’s 1948 report [42]).

In Section 10 we define the notion of functional processes, and develop a
concept similar to differentiation for computational processes, telling us when

Understanding Computation 7

a process admits a ‘step function’ that works as a program for it. In Section
11 we then show how diverse notions of complexity can be neatly expressed in
the framework, with a discussion of what properties of computations may be
‘knowable’. In Section 12 we give some conclusions and reflect on some open
questions our framework leads to.

2 Philosophical considerations

In the remainder of this report we will develop an answer to the question what
it is that computations do, with a level of generality that will allow us to
focus on the concept of computation proper. We first describe the philosophical
background of our approach. We then summarize the main results that will be
obtained in this report.

Overall we believe that the philosophy of computing is indispensable for find-
ing new pathways of research into computation. Two ingredients will be crucial:
the common characteristic of computational machinery as it was suggested in
Turing’s 1948 report [42], and the recent epistemic theory of computation which
we developed earlier [48, 50].

2.1 Cornerstones

If we do not limit computation to the digital domain per se, then how should it
be viewed? In [22, 23] it was shown how abstractly representing key processes
in a known computational domain can clarify when natural systems may be
said to ‘compute’. For understanding the core notion of computation, this is
not sufficient. We sketch the two philosophical cornerstones we use.

Actors and spectators In most approaches to understanding things, whether
they are real or artificial, a Kantian duality arises between understanding a
thing as it is (Kant: noumenon) and the thing as it appears to us (Kant: phe-
nomenon). In understanding computation one can recognize a similar duality.
We will use the actor-spectator paradigm due to Beck [4], to describe our field
of concern as follows. On the one hand there is an actor which produces some-
thing (in our case, presumably through an act of computation), and on the
other there is a spectator which observes, interprets, and signifies what the actor
does. Clearly, it is the interplay between these two that ultimately determines
the meaning of what the actor does.

Some further reflections are in order. In stead of one actor one could have
many, but we only consider the acting of one (or, in any case, of only a bounded
number of them). We do not make any assumptions beforehand how an actor
does what it does, whether it follows a program, whether it interacts with its
surroundings, and what physical properties it has other than that it takes ‘some’
time to produce whatever it produces. We will later use the term ‘process’ for
what is here called an actor, and sometimes we use the term ‘agent’ if we mean
a process in the act of producing something.

Also, in stead of one spectator one could have several, but we confine our-
selves to having just one. We do not prescribe what spectators should see, but

8 J. van Leeuwen and J. Wiedermann

merely assume that they can all ‘track’ what an actor produces in some quan-
titative way (e.g. by means of a bounded set of parameters). Also, spectators
need not only be signifiers of whatever an actor produces, but they may also
influence the (functioning of the) actor, and vice versa. For example, a spectator
may limit an actor to be active for only a finite time, or become an actor itself
based on whatever an actor around him produces. Here we will view spectators
primarily as (passive) ‘observers’ and often use this term to denote them.

Epistemic theory Actors can be artificial objects like (programmed) machines
or robots, or natural ones like cells or physical systems ‘in context’. Indeed,
actors can be any system embedded in and potentially interacting with an
environment, in which it is capable of producing or generating something. All
we need now is a philosophy that tells us when an actor (or process) is producing
‘computations’.

Although we may or may not know anything about how an actor produces
what it does, we assume that the spectator possesses the necessary means to
observe the actor and has a reasoning capability to deal with its observations
and possibly conclude from them, in a formal or informal way. Taking this
a step further, the epistemic theory of computation holds that an observed
‘action’ is a computation precisely when the action is productive, seen from the
perspective of the (knowledge-)theory of the spectator, i.e. when its result is
both ‘explainable’ and ‘provable’ as an outcome from the premises used by the
actor [48–50].

Hence we contend that a spectator, when he is observing a given actor, is
observing something he may call a computation when the following conditions
are met:

– the observed entities over time make sense in a (more or less) well-defined
and formal knowledge domain he has at his disposal, and

– the overall observed behaviour is that of producing (new) knowledge items
in the domain, consistent with the rules of reasoning in the domain.

This complies with the dogma of the epistemic theory of computation, which
asserts that computations are acts of knowledge generation. The only fact we
need to rely on is that, whatever the spectator observes and/or concludes in
its frame of reasoning, must be supported by the actions of the actor process.
Note that, in this approach, computation is an observer-dependent notion [49].

The epistemic view of computation deviates substantially from the common
views of computations as the actions of a specified (or: programmed) computer
model, or as transformations of information in some abstract setting. In [48,
50] we have given many examples of the versatility of the epistemic approach,
including many examples which are not well-explained or covered by other
approaches. We adopt it as our reference view of computation here.

The, observer-dependent, approach is a very flexible one and makes the
epistemic philosophy of computation very versatile. For example, it has been
used to give computational views of a variety of cognitive processes, and further
applications are easily imagined [51].

Understanding Computation 9

Reflection In its most general sense, the epistemic theory recognizes that a
‘process’ is only truly understood once the observable effects it generates over
time can be seen as a temporal chain of knowledge that is generated according
to the, known or unknown, rules of some underlying knowledge domain. If a
process is understood in this way, it is declared ‘computational’.

The epistemic theory explains why the range of processes viewed as com-
putational is rapidly expanding, from classical numerical computation in math-
ematics to all types of processes in other sciences like biology, physics and
chemistry nowadays. It is also consistent with the widely-held view that com-
putation is among the fundamental processes in Nature and in the Universe,
giving meaning to the proper way in which computation has to be understood
as a phenomenon [16].

2.2 What computations are

The given philosophy is still very general but outlines how we aim to approach
the specific challenge of this report. Here we outline how the philosophy is
applied to obtain a general definition of computational processes and of the
computations they produce. We will show later on that many other notions
that one may want to define for computational systems, can be cast in this very
framework as well.

Computational processes In our general approach to computation, compu-
tational processes are merely seen as actors that produce computations. No
further assumptions will be made about them, i.e. other than that they must
be capable of generating actions over time that are recognized as computations
by the criteria of a spectator. In [49] this was restated in formal terms, but here
we concretize it further.

In order to develop a theoretical framework, we need to identify what it is
that the actor produces and the spectator observes over time as being compu-
tation. For this, we use the key insight from Turing’s 1948 report [42] that all
machinery, i.e. all computational processes, can be regarded as continuous, in
the following sense:

The states of ‘continuous machinery [. . .] form a continuous manifold, and the be-

haviour of the machine is described by a curve on this manifold.

If we adopt this, the far-reaching consequence is that computational processes
are simply actors capable of producing activities over time that can be seen
as curves on a suitable manifold, with the additional requirement that these
curves capture the generation of knowledge according to the spectator. The
actor’s production of these activities is then called computation.

We are left with the problem to define computational processes as a notion.
As it is impossible to specify uniformly how processes do what they do, we
confine ourselves to defining what they do. We formulate it in very general
terms, to be made more precise later.

Thesis. A computational process consists of the set (family) of all curves determined

by some actor, under the proviso that the actor only produces allowable curves, i.e.

curves that satisfy the criteria for computations as imposed by the spectator.

10 J. van Leeuwen and J. Wiedermann

This extensional characterization gives us the generality we need for appre-
ciating computational processes and computations as generic phenomena. It is
both machine- and algorithm-free, i.e. all internal details and I/O specifics of
the particular process we deal with are perfectly hidden. Indeed, these opera-
tional details are hidden in the details of the manifold and the curves, and in the
criteria that make curves allowable, i.e. generating knowledge in the knowledge
domain at hand. If more details of the process are called for, it is up to the
spectator to inspect the actor in question more closely.

General theory of computation Given the general characterization of com-
putational processes and computations, we can finally aim to develop a theory
of computation that applies to both digital and non-digital domains and that
is not bound to traditional computational models only. It enables us to develop
a theory that is potentially applicable to computation in any context where
it is meaningful. The theory is effectively a general theory of computational
processes.

In order to make underlying notions like manifolds and curves precise, we
have to identify suitable action spaces in which these concepts make sense. We
will require that the action space of a computational process is a topological
space of some kind, so we can define what it means for actions that are close ‘in
time’ to be close ‘in the action space’ as well. In fact, for the purposes of this
report, we will always require that action spaces are metric. Computational pro-
cesses thus manifest themselves by generating curves that represent ‘continuous
chains of observed actions’ in their action space.

This characterization of computational processes, however, also requires
that the generated curves are ‘allowable’, i.e. that they make sense when viewed
as chains of actions in a suitable knowledge space. Additional criteria have to im-
posed ‘along a curve’ in order that it can be interpreted as generating knowledge
in the relevant knowledge space. The combination of topological and knowledge-
theoretical (logical) properties gives a powerful framework for mathematical
analysis.

In this report we will prove that a versatile theory can be developed along
these lines. We will show that many features of computations and computational
processes can be cast in this framework, and that theorems can be proved that
correspond to natural properties. In particular, the framework that we develop
will enable us to resolve Turing’s dichotomy and prove the following result,
under mild assumptions: every discrete computational process is the ‘projection’
of a general, i.e. continuous, computational process.

2.3 Cross connections

There are notable connections between our framework and the frameworks em-
ployed in various other fields. We discuss the connection to dynamical systems
theory and to trace theory.

Computational vs. dynamical systems Rephrasing the view we devel-
oped, computational systems may well be described as ‘families of allowable
curves determined by computational processes’. This reminds of the definition

Understanding Computation 11

of dynamical systems, which are commonly described as ‘families of motions
determined by evolutionary processes’ [28].

Even without precise definitions, one can immediately infer that dynamical
systems are computational from the perspective of our framework only if the
motions determined by them can be viewed as ‘allowable’, i.e. if there is some
knowledge domain in which all motions can be viewed as generating knowledge
(by the criteria of a spectator). If this condition is not satisfied for a given
dynamical system, then it is not computational. However, if the condition is
satisfied, then it is computational, as we do not concern ourselves with the way
a system actually generates its curves.

Conversely, computational systems may be viewed as dynamical only if their
curves can be seen as ‘motions’, i.e. are determined by some system of difference
or differential equations as in common dynamical systems. This will often not
be the case, nor be known explicitly if it is. Also, for our purposes we do not
want to rely on any internal specification of the system, as opposed to the types
of analyses of dynamical systems [28].

Nevertheless, the fact that the frameworks of computational and dynamical
systems have some overlaps, suggests that their theories might have overlaps as
well. The connection between (the control theory of) dynamical systems and
the modeling of computation (by machines) was noted before, e.g. by Arbib [2]
some fifty years ago. He wrote ([2], p. 161):

[. . .] the two sciences of control theory and automata theory can gain immensely if

structures and techniques of each field are examined and reworked in the light of the

structures and techniques of the other.

As a case-in-point, Arbib [3] showed how a ‘tolerance relation’ could take
the place of continuity, to model state machines that act in discrete time as
dynamical systems. In the resulting framework of tolerance automata, he was
able to characterize an ‘optimal control problem’ for automata. An excellent
view of the computational interpretation of dynamical systems concepts and
theories was given by Stepney [38]. Siegelmann and Fishman [37] exploited the
analogy to develop a theory of computational complexity for dynamical systems.
See also Platzer’s survey of analog and hybrid computation, explained from a
discrete and continuous dynamical systems perspective [35] and the theory of
analog computation through dynamical systems due to Bournez et al. [8, 9].

Nevertheless, as computations are not motions and dynamical systems are
not aimed at generating knowledge, the analogies between the two notions are
only of limited use to the fundamental analysis we present here. Our primary
aim is to clarify the essence of computation.

Trace theory The notion of computation we follow in this report, is inspired
by Turing’s view that the progressing behaviour of a machine over time can be
seen as a curve on a suitable manifold. This suggests a possible connection to the
theory of so-called traces, which are symbolic representations of the sequences
of actions of a machine or system (of processes) over time.

The interpretation of traces as qualified sequences of symbols over some
alphabet is well studied. Traces were originally defined for understanding the

12 J. van Leeuwen and J. Wiedermann

behaviour of concurrent systems. Mazurkiewicz [26] already showed, in the nine-
teen seventies, that traces can represent the possible serializations of the actions
of interacting processes on a finite or infinite time scale. Thus, concurrent sys-
tems may be seen as ‘families of traces determined by communicating processes’.

This description of concurrent systems reminds of that of computational sys-
tems as ‘families of allowable curves determined by computational processes’.
However, the connection does not go further than this. At the very general level
at which we are studying computational processes here, no actions are distin-
guished and thus there is no symbolic aspect to the curves as we shall use them.
Also, generated knowledge can generally not be seen as traces. Nevertheless,
some connections will appear as we proceed, e.g. when we study compositional
aspects of computational processes.

2.4 Towards a topological framework

In the remainder of this report we will expand the general framework. Ac-
tors become computational processes, and what they can produce (or generate)
will characterize our understanding of computation in a very broad and generic
sense. Spectators turn into observers that interpret whatever the observed com-
putations tell them and thus what these do. Eventually, computations must lead
to items of reasoning, i.e. to knowledge of some kind, for their observer.

From our considerations the view emerges that computations result from the
possible lines of action of computational processes which are funneling many
causal effects in time. The lines of action need not be described by a program
- they merely give an observable view of a ‘run’ of the underlying process over
time, within a certain environment that evolves over time as well. In their
computations, processes are continually building up knowledge in accordance
with the, known or unknown, rules of an underlying knowledge domain.

In order to obtain a theory from these principles, we will first elaborate
on the view of computations as trajectories, or curves, by giving a combined
topological and knowledge-theoretic framework in which computations are for-
mulated as purely mathematical objects with characteristic properties. This will
lead us to a general theory of computational processes that is algorithm-free,
representation-free and machine-independent and that embodies the philoso-
phy of computation as knowledge generation. In the end we want to be able to
‘program’ computational processes for any purpose.

In elaborating this theory of computation, we will use the concepts of gen-
eral topology to elicit many of its key aspects. For basis concepts and definitions
we refer to any standard textbook on General Topology (e.g. [30], or see [46]).
A first outline of the topological instantiation of the epistemic theory of com-
putation was given in [45].

3 Computation - concepts and definitions

We now digress on the philosophy given in Section 2, to obtain an understanding
of computation in a broadest possible way. Furthermore, we will demonstrate a
possible theoretical framework that reflects it. Before we can do so, we introduce
the kinds of spaces which an observer needs to distinguish.

Understanding Computation 13

3.1 Essential spaces and maps

In this section we define action spaces, knowledge spaces and the maps that
connect them, the so-called semantic maps.

Action spaces When can we say that actors act like computational processes?
We want to remain at a very abstract level as regards their underlying mech-
anisms, but some assumptions must be made about the ‘world’ in which they
live. In [45] we argued that computations take place in action spaces, consisting
of action items of some descriptive nature. Action spaces were assumed to be
topological spaces, to reflect a presumed proximity relation among the action
items in the space.

In this report we go one step further and assume that, to an observer, action
items are like symbolic complexes of some kind, which he can interpret. The
more precise format of the action items will depend entirely on the way the
observer understands the items. It can differ widely from process to process.

Example 1. The action items corresponding to (the functioning of) a cell may
consist of all connections, tables and measurements of biological compounds
that are deemed to be of interest. An action item holds all information about
the cell and its direct environment as needed for understanding it at some
moment in its life (or, during its ‘operation’). By definition, the action space of
a cell may be uncountable.

Example 2. A well-known model of intelligent systems consists of agents whose
actions can be directed according to certain ‘beliefs’, ‘desires’ and ‘intentions’
[10]. The action space of a BDI-agent consists of items that contain the (values of
the) attributes, data, and expressions corresponding to its operation and current
plan at any moment in time, including representations of its beliefs, desires and
intentions. Assuming that an agent is observed only at discrete time intervals, its
action space is countable. The action space of a group of BDI-agents includes
the individual action items of the agents, now extended with characteristics
about their observed interrelation, interaction and commonalities as well.

Action items could well be unbounded, or infinite objects. This may be due
to the extent of the items themselves, or to the nature of certain attributes
in it. For example, some features might be real-valued or involve unbounded
lists. We will not rely on any specific structure of the action items, but merely
assume that one can define a reasonable notion of ‘distance’ between them that
accounts for the (extent of the) observable differences between between - it
is not strictly needed for the theory but makes it more intuitive. In fact, we
assume the following strengthening of our earlier assumption that action spaces
are topological.

Action spaces are metric spaces, with the topology induced by the metric.

We use the assumption for qualifying the ‘distance’ from one action item to a
next, as it seems imperative that computations can only bridge small distances
at a time. We note here that metric spaces are Hausdorff, i.e. any two distinct

14 J. van Leeuwen and J. Wiedermann

action items have disjoint open balls around them. Thus, a computation affects
the entire open ball around an item ‘in one step’. (See also [31] for a different
use of metric spaces in computation.)

It is up to the observer to define the action space that is ideally suited
for the computational process he wants to study. Action spaces are always
required to be metric, even though we do not need the assumption when we
are merely interested in combinational properties of computations only. If we
are only interested in ‘small effects’, we may replace a given metric d(x, y) by
a curtailed version dε(x, y) = min{d(x, y), ε} (which is a metric again, for any
ε > 0). We do not require action spaces to have any special properties up front,
such as separability or compactness.

If some distances would have to be ‘undefined’, one could assume an action
space to be a generalized metric space. A generalized metric is a distance func-
tion on pairs of points whose range is part of R∪{+∞} but which still satisfies
the usual metric properties. We will not pursue this here.

Knowledge spaces We stated that computations must lead to ‘items of reason-
ing’ to their observer. It means that observers must have a reasoning capability,
to understand what is being produced in action space and derive conclusions
from it. Consequently, an observer must possess a theory for dealing with the
(contents of the) action items in the action space. This theory could be formal
or informal and may have guided the very definition of the action space to begin
with.

To keep this as general as possible, we rather refer to the observer as rea-
soning with ‘knowledge items’. These items may be described as the ‘observed
contents’ of those action items which the observer can interpret while the com-
putational process produces its effect in the action space. The collective domain
of knowledge items will be termed a knowledge space rather than a theory. We
make the following assumption.

Knowledge spaces are equipped with a formal or informal system for
reasoning with and applying the knowledge items they contain.

The term ‘knowledge’ is used freely here, to refer to any form of information
that can be interpreted and reasoned about by the observer. Given a knowledge
space K, the system of reasoning can be logic-based or otherwise, but is always
assumed to involve some kind of entailment or inference relation which preserves
the ‘validity’ of knowledge.

Definition 1. An inference relation |= on K is any reflexive, transitive relation
on the items of K.

In general, a reasoning system may deal with finite groups of items simulta-
neously. Such groups of items can be considered as one, in a suitably redefined
knowledge space. In the ASM framework [21] there is a knowledge space con-
sisting of ‘first-order structures’, with a |=-relation determined by the possible
transformations of one state into another by the execution of (a sequence of
steps of) an ASM program. We do not digress on this here. In case |= is only
partially defined, we use |=? to denote its reflexive, transitive closure.

Understanding Computation 15

By definition, the knowledge spaces we deal with are always closed under the
entailment relation that applies to them. However, normally only a small part of
a knowledge space is really ‘known’ or given beforehand (i.e., to the observer).
In so-called ‘theory-like’ spaces we assume that this part is potentially sufficient
for inferring all other knowledge in K.

Definition 2. A knowledge space K is said to be theory-like if it contains a
pre-defined (proper) subset K0 of core knowledge such that K is the closure of
K0 under entailment.

The knowledge spaces we encounter will normally be theory-like, with ‘cores’
that are easy to recognize for an observer. A knowledge theory is any sufficiently
formalized, theory-like knowledge space.

Semantic maps Given an action space A, an observer needs to be able to
extract (or ‘see’) the meaningful information (‘knowledge’) from those items
that contain it. It is a fundamental aspect of the actor-spectator paradigm. Let
E be the knowledge space employed by the observer.

Definition 3. A semantic map from A to E is any partial mapping δ : A→ E.

Semantic maps relate action items to knowledge items, corresponding to
how this is presumably done by an observer when he monitors an ongoing
computation. We leave it open how observers actually evaluate semantic maps
and employ the resulting knowledge items in the reasoning system.

Repeatedly applying δ to an ongoing computation could potentially alter the
course of the computation, but we do not explicitly take this into account here.
Note that δ(x) may be undefined for some x ∈ A, reflecting the fact that many
action items may actually not contain knowledge that is ready for ‘display’.

One may want a semantic map δ to preserve or translate certain properties
of items in A into corresponding properties in E. We view this as a matter for
the observer when he is defining his ‘observatory’.

3.2 Computational processes and computation

We can now define computation, in a very general sense. Following the philoso-
phy in Section 2, a computation always involves two spaces: the action space in
which it is produced, and the knowledge space in which it gets its operational
meaning. It also involves a computational process that actually generates the
computation and an observer to give it meaning. We expand on this in a number
of steps, to obtain a mathematically tractable notion.

What a computational process is First of all, we envision that a computa-
tion winds through action space in some way and is interpreted by the observer
through the facilities of the relevant knowledge space. To formalize this, we rely
on basic notions from metric topology to capture this approach. Let A be a
metric space, with metric d.

Definition 4. A curve (or: path) in A is any continuous function c with c :
[0,∞)→ A.

16 J. van Leeuwen and J. Wiedermann

Curves are normally defined only on bounded segments of [0,∞), but we
view them as running on ad infinitum as a matter of principle. We rely on
other mechanisms if curves are to be observed during bounded segments of
‘time’ only. (We could have defined curves equivalently as continuous functions
c : [0, 1)→ A but we do not regard [0, 1) as an appropriate time domain for the
purposes of this report. In other contexts, alternative definitions along this line
may be meaningful.)

Notation 1 For a given curve c, we denote cinit = c(0).

We can now define what we mean by a computational process. It is a central
notion of this report, showing the actor-spectator paradigm in all detail. For our
theory, it is immaterial whether a computational process actually corresponds
to a physical realization. However, we contend that any computational process
that does, admits a formalization of this kind.

Definition 5. A computational process is any 5-tuple P = 〈A,E, δ, E0, C〉
where A is an action space, E is a knowledge space, δ : A → E is a semantic
map, E0 ⊆ E is a non-empty set of initial knowledge, and C is a collection of
curves in A such that the following consistency conditions are satisfied:

– for every c ∈ C: δ(cinit) ∈ E0, and
– for all t1, t2 ∈ [0,∞) with t1 ≤ t2: if δ(c(t1)) and δ(c(t2)) are both defined,

then δ(c(t1)) |=? δ(c(t2)) in E.

To keep the notation simple, we assume that the inference relation |= on E is
implicit in E’s definition.

What a computation is Finally we can finally answer the question ‘what a
computation is’, in the very general sense we have been aiming at. With all
ingredients in place, the definition is easy to state.

Definition 6. A computation in A is any curve c for which there is some
computational process P = 〈A,E, δ, E0, C〉 such that c ∈ C.

Definition 7. Let c and c′ be computations of the same computational process
P . Then c′ is said to be a subcomputation of c if there is a T ≥ 0 such that
c′(t) = c(T + t), for all t ≥ 0.

Definition 8. Let P = 〈A,E, δ, E0, C〉 be a computational process. Let c ∈ C
be a computation and α ∈ A an action item. Then c is said to visit α if there
is a time t ∈ [0,∞) such that c(t) = α.

Note that there may be many, indeed even infinitely many times t such that
c(t) = α. Thus, if c visits β after it visits α, it may well visit α again. Later on
we will distinguish computations based on the many ways in which they may
‘visit’ and explore items in A.

Constraints By imposing additional constraints, special properties of compu-
tational processes may be enforced. For example, suppose one wants to artic-
ulate that computations can make only a limited number of changes to action

Understanding Computation 17

items of A per unit of time. This leads to the following definition, insofar as this
property can be measured by the metric distance. The concept is well-known
in metric geometry.

Definition 9. A curve c is called Lipschitz if c is Lipschitz continuous, i.e. for
all t1, t2 ∈ [0,∞) : d(c(t1), c(t2)) ≤ κ|t1 − t2|, for some constant κ ≥ 0. In this
case, κ is called a Lipschitz constant for c.

Definition 10. A computational process P is said to be Lipschitz if all curves
in C are Lipschitz curves. If all curves in C are Lipschitz with the same con-
stant, then P is said to be uniformly Lipschitz. A computation c is said to be
Lipschitz if it is produced by a computational process P that is Lipschitz.

Lipschitz continuity is a special case of Hölder continuity which, in turn, implies
uniform continuity. Lipschitz curves are ‘linearly bounded’, in the sense that, if
c is Lipschitz with constant κ, then d(c(init), c(T)) ≤ κ · T for any T ≥ 0. The
properties are mentioned only as examples of the kind of ‘familial constraints’
we will encounter later.

The general definition of computational processes is crucial for the remain-
der of this report. In section 4 we will give examples of all concepts that we
defined.

Causal aspects It is implicit in the definition of computations that there is a
causal explanation of how they produce whatever knowledge they produce. This
is, in fact, an explicit requirement of computational processes in [48]. In this
report we stay with the very same approach, requiring that the ‘computations’
we consider somehow result from a coherent scheme that can produce them.
This is often all we need for a ‘computational view’.

We make a number of further observations that relate to the diverse aspects
of the issue of causality.

Proposition 1. Let P = 〈A,E, δ, E0, C〉, let δ′ : A → E be such that δ′ v δ,
and let C ′ = {c ∈ C | δ′(cinit) is defined}. If P is a computational process, then
so is P ′ = 〈A,E, δ′, E0, C

′〉.

The causal explanation of computations will normally be based on prop-
erties of the generating process, but alternate causes may exist. The following
observation could be useful in this respect.

Proposition 2. Let {ci}i=1,2,··· be a sequence of computations from C, and
assume that the sequence converges uniformly to a function c : [0,∞) → A.
Then c is a curve in A.

Proof. As both [0,∞) and A are metric spaces, all concepts make sense. The
lemma now follows immediately from the Uniform Limit Theorem (cf. [30]). ut

The Uniform Limit Theorem also implies that, if all curves ci (i ≥ 1) are
uniformly continuous and the sequence {ci}i=1,2,··· converges uniformly, then
the limit curve c is uniformly continuous again. As a special case, one may

18 J. van Leeuwen and J. Wiedermann

show that, if e.g. all curves ci (i ≥ 1) are Lipschitz with a same constant K
and {ci}i=1,2,··· converges uniformly, then the sequence converges uniformly to
a curve c that is Lipschitz again, with the very same constant K. Many more
convergence results of this nature from topology may be applied here.

The proposition does not guarantee that limit curve c satisfies the consis-
tency conditions again, nor that it is an element of C if it does. One needs
additional properties of P if one is to draw any further conclusions here.

If no e.g. physically motivated explanation is available, a process that satis-
fies Definition 5 may be termed symbolically computational. We will only con-
sider this in exceptional cases, e.g. when a process is constructed for a mathe-
matical purpose. Criteria of effectiveness only enter if they need to be assumed
by the observer. Here, we do not assume it, to maintain perfect generality. (For
example, many natural processes do not normally fit this criterion but satisfy
our definition.)

Let P = 〈A,E, δ, E0, C〉 be a computational process. For any computation
c ∈ C, we define its footprint (or range) in the course of the computation to be
the set Ac = {c(t) | 0 ≤ t <∞}

Proposition 3. Let P = 〈A,E, δ, E0, C〉 be a computational process. For any
computation c ∈ C, Ac is a separable subspace of A (hence homeomorphic to a
subset of the Hilbert cube).

Proof. As [0,∞) is a separable metric space, so is its image Ac = c([0,∞))
under the continuous mapping c. By general topology, any separable metric
space is homeomorphic to a subset of the Hilbert cube. ut

By a similar argument one sees that for any T ≥ 0, the ‘bounded’ footprint
Ac(T) = {c(t) | 0 ≤ t ≤ T} is a compact subspace of A. Note that, by general
topology, compact subspaces are separable as well.

Before proceeding, we make some more remarks about the definition of
computational processes and their computations.

Definitional aspects Defining computations as curves c : [0,∞)→ A assumes
implicitly that computations proceed continuously. This definition of compu-
tation corresponds to the notion of machinery as put forth in Turing’s 1948
report [42]. It may seem that the requirement of ‘continuity’ complicates mat-
ters tremendously, but we will see in this report that it gives us all the generality
we need for modeling computational processes. We note that ‘real-continuous’
curves may be necessary for some natural mechanisms [40].

One immediately notes that this is very different from the traditional ap-
proach in which computations are viewed as proceeding stepwise. As a case in
point, the general ASM framework [21] still describes a computation as a finite
or infinite sequence of states corresponding to the elaboration of a program. The
state-based approach makes it an instance of a discrete process, at least in the
view of the observer. Thus, in order to be sound, our definition requires that
we settle the apparent dichotomy between discrete and continuous machinery.
We will discuss this in great detail in Sections 6 and 7.

Understanding Computation 19

Defining computations as curves also implies an implicit orientation of com-
putation in time. This reflects the (broadly viewed) condition of serialisability
for computations with many components, in a way that is consistent with causal
effects. Thus, memory, input and output are all viewed as being represented into
the action items in A as ‘strung together’ by c and observed using δ, the se-
mantic map. A similar principle is well-known for e.g. systems of distributed
processes, which may be viewed as a single computational process in our frame-
work (or, just as well, as a ‘composition’ of computational processes).

An important question is whether any ‘familial constraints’ should be sat-
isfied by the computations of C (as curves). For example, one might want to
impose that all computations of C are Lipschitz continuous or that C is equicon-
tinuous as a family. However, we do not require computational processes or the
multitude of computations they may generate to satisfy any of these familial
constraints ‘up front’, so as to keep our theory perfectly general.

In later sections we will see that, by defining computations as curves, nu-
merous relevant properties of computations can be expressed in a natural way.
Even though metric properties may not grab the behaviour of a computational
process fully, they may sufficiently narrow it down for analytic purposes. Our
main interest is not in developing a new theory of curves but to explore their
use in modeling computations and knowledge-generation.

Semantic aspects Given a computational process P , the semantic map en-
ables an observer to ‘read’ the knowledge build-up during any computation
c ∈ C, by just applying δ to c(t) at times t, for t→∞. Potential side-effects are
assumed to be implicit in the course of c. Semantic maps must be rich enough,
to provide enough content for the consistency conditions to hold.

This (limited) observability of computations may not always suffice: an ob-
server might well wish to observe the computation during ‘windows of time’,
i.e. observe segments {c(u) | t−w ≤ u ≤ t} of a computation c ‘in one view’ as
t goes to ∞, for some fixed or flexible window size w. For now we stay with the
basic principle of observing computations at arbitrary times t, leaving further
aggregations aside.

The consistency conditions are crucial for a sound interpretation of the ac-
tion of a process. The requirement that for every c ∈ C: δ(cinit) ∈ E0 reflects
the idea that process is always observed from some ‘time 0’ onward. The allow-
able initial actions items should be observable, having δ-values that are known
in advance, i.e. in E0 (like instantiations of axioms). Note that this is the same
as requiring that cinit ∈ A0, where A0 = {a | δ(a) ∈ E0}. We do not allow
other sets of initial action items, as the observer would most likely not be able
to recognize their elements.

Starting in cinit as stated does not imply, in general, that all inputs or
environmental influences that c may experience during its ‘lifetime’ must be
known in advance. New information may well come in later and outputs made
known, in the later action items which c visits in the course of time. Thus, in
general, many computations may start at the same initial item a = cinit.

The second consistency condition is the most far-reaching one. It requires
that for any computation c ∈ C and any T ≥ 0 for which δ(c(T)) is defined, the

20 J. van Leeuwen and J. Wiedermann

knowledge item δ(c(T)) holds enough ‘knowledge data’ such that for all t ≥ T ,
all knowledge items δ(c(t)) can be derived from it within E. Only this way, a
computation achieves its meaning as a computation within the knowledge space
of the observer. If a computation could not be traced in the reasoning frame of
the observer, it would just be magic.

The consistency of a computation c is rooted is the one, single knowledge
item of E0 that is assumed at its start. All further knowledge that is obtained
‘down the line’ should be logically derivable from this one item, if one inter-
prets the consistency conditions as they stand. This requires that the reasoning
framework of the observer, i.e. of E, is rich enough to take all possible effects
of input and interaction with the environment into account that can possibly
occur during the lifetime of a computation, and in fact do occur during c.

More generally, one may wish to ground a computation in a (finite) set of
knowledge items, or relax the requirement of derivability ‘along the line’, by
allowing more knowledge items from E0 than just δ(cinit) to be used without
deriving them explicitly in earlier stages during the computation. Many of these
adjustments can be accommodated by suitably redefining A, E, or even the
elements of C.

Example 3. Let P = 〈A,E, δ, E0, C〉 be a computational process, T a time mo-
ment. One may call a computation c ∈ C restartable at time T , if the action
item reached at time T holds all information for ‘continuing’ c after it is pre-
empted at that time, i.e. if δ(c(T)) is defined. If we let cT : [0,∞)→ A denote
the curve defined by cT (t) = c(t + T) for t ≥ 0, then cT indeed satisfies the
consistency conditions from time t = 0 onward and thus is a computation again.
Process P ′ = 〈A,E, δ, E′0, C ′〉 with E′0 = {δ(c(T)) | c ∈ C and δ(c(T)) defined}
and C ′ = {cT ∈ C | c ∈ C and δ(c(T)) defined} generates precisely all compu-
tations of P that are restarted at time T after pre-emption.

3.3 What computations compute

It is now clear that, in order to state meaningful things about a computa-
tion, one should observe the computation as it is generated by the underlying
computational process. This enables us, at last, to define what a computation
computes.

Definition 11. Let P = 〈A,E, δ, E0, C〉 be a computational process, and let
c ∈ C be a computation. Then c is said to compute (or: generate) the set Ec
defined by Ec = {δ(c(t)) | 0 ≤ t <∞)} (= δ(c)).

By the definition, the ‘data’ computed by a computation c consists precisely
of all the knowledge which an observer can ‘extract’ from c during its lifetime.
It formalizes the core dogma of the epistemic theory of computation, namely
that computations are acts of knowledge generation.

Definition 12. Let P = 〈A,E, δ, E0, C〉 be a computational process, and let
e ∈ E be a knowledge item. Then e is said to be computable if and only if there
is a computation c ∈ C such that e ∈ Ec, i.e. such that there is a time t ∈ [0,∞)
such that δ(c(t)) = e.

Understanding Computation 21

Considering how computations c unfold, an observer can only meaningfully
extract information from them at ‘observable times’, i.e. at times t for which
δ(c(t)) is defined.

Definition 13. Let P = 〈A,E, δ, E0, C〉 be a computational process, and let
c ∈ C be a computation. The observable trace of c is the map mc : Ic → A with
Ic = {t | δ(c(t)) is defined} and for every t ∈ Ic, mc(t) = c(t).

Thus, if an observer had any way of telling (e.g. by recognizing the action items
for which δ is defined), he could restrict his activity to the times in the set
Ic of a generated computation. This will become relevant in our discussion of
‘discrete computations’ later on. Note that, in the definition, that one always
has 0 ∈ Ic, for every computation c of P .

We defined Ec such that it consists of all knowledge computed by c on the
way, not just the knowledge that is achieved in a final stage of c (whatever that
may mean) nor the knowledge as it may be ‘seen’ by the observer through some
additional filter. We leave these options aside, insofar as they do not directly
follow from a modeled computational view.

Definition 14. Let P = 〈A,E, δ, E0, C〉 and P ′ = 〈A′, E, δ′, E′0, C〉 be compu-
tational processes. P and P ′ are said to be equivalent (notation: P ≡ P ′) if for
every c ∈ C there is a c′ ∈ C ′ such that Ec = Ec′, and vice versa.

We now show that any computational process P can be modified such that
for any of its computations c, the modified computation does not only pro-
duce δ(c(t)) at time t but the entire cumulative set {δ(c(T)) | 0 ≤ T ≤ t} of
‘intermediate knowledge’ up to time t, for any t ≥ 0.

Theorem 1. Let P = 〈A,E, δ, E0, C〉 be a computational process. Then there
exists a computational process P ′ = 〈A′, E′, δ′, E′0, C ′〉 such that the following
holds: for every c ∈ C there is a c′ ∈ C ′ such that for all t ≥ 0, δ′(c′(t)) =
{δ(c(T)) | 0 ≤ T ≤ t}, and all computations of P ′ are obtained this way.

Proof. Let P = 〈A,E, δ, E0, C〉 be a computational process. Define A′, E′, δ′,
E′0, and C ′ as follows:

– let A′ be the family of non-empty, compact subsets of A. The Hausdorff
distance for compact sets in A, turns A′ into a metric space.

– let E′ be the family of non-empty subsets of E. Define a relation |=′ on E′

such that for any two elements E1, E2 of E′: E1 |=′ E2 if and only if for
every e ∈ E2, e ∈ E1 or there exists a e′ ∈ E1 such that e′ |=? e in E.
This extends |= to an inference relation on subsets of knowledge items of E,
turning E′ into a valid knowledge space.

– define the semantic map δ′ : A′ → E′ by δ′(B) = {δ(b) | b ∈ B}, for any
subset B ⊆ A.

– for any computation c ∈ C, define c′ : [0,∞) → A′ by c′(t) = {c(T) | 0 ≤
T ≤ t}. By continuity of c, c′(t) is a compact subset of A and thus belongs
to A′, for any t ≥ 0. With the Hausdorff metric in A′, one easily sees that
c′ is continuous, hence a curve. Let C ′ = {c′ | c ∈ C}.

22 J. van Leeuwen and J. Wiedermann

– finally, let E′0 be the subspace of E′ consisting of the singleton sets {e} with
e ∈ E0.

One easily verifies that, with these definitions, every c′ ∈ C ′ satisfies the consis-
tency conditions, with δ′ as the semantic map, E′ as the underlying knowledge
space, and E′0 as the set of initial knowledge items.

We conclude that P ′ = 〈A′, E′, δ′, E′0, C ′〉 is a well-defined computational
process. For any c ∈ C, the corresponding computation c′ ∈ C ′ satisfies δ′(c′(t)) =
δ′({c(T) | 0 ≤ T ≤ t}) = {δ(c(T)) | 0 ≤ T ≤ t}. ut

In later sections we will study many properties of the sets Ec, with c being
generated by some computational process P . We will also be interested in the
full knowledge potential of a process.

Definition 15. Let P = 〈A,E, δ, E0, C〉 be a computational process. Then P
is said to compute (or: generate) the set EP defined by EP ≡

⋃
{Ec | c ∈ C}.

Clearly, if an observer has access to all items in the action space to begin
with, then all knowledge contained in it can be computed without any effort.

Proposition 4. Let A be a metric space, E a knowledge space, and δ : A→ E a
semantic map, all arbitrary. Then for every non-empty subset F ⊆ A, there is a
symbolically computational process P = 〈A,E, δ, δ(F), C〉 such that EP = δ(F).

Proof. Let F ⊆ A. For any a ∈ F , define the map ca : [0,∞)→ A by ca(t) = a
(= constant). Clearly, every ca is continuous and thus a curve. Let C = {ca |
a ∈ F}. As E0 = δ(F), C satisfies the consistency conditions. Hence P is a
computational process, and one easily sees that EP = δ(F). ut

Hence, all computational processes of interest will likely have an E0 that is only
a ‘small’ subset of δ(A), thus of E.

Finally, we define universality as the ability of a process to generate all
knowledge items that are derivable in the knowledge space.

Definition 16. A computational process P = 〈A,E, δ, E0, C〉 is called univer-
sal if EP = {e ∈ E | e′ |=∗ e for some e′ ∈ E0}.

Note that, if E is theory-like, then {e ∈ E | e′ |=∗ e for some e′ ∈ E0} = E.

3.4 Mappings between computational processes

We will frequently want to relate computational processes by means of map-
pings. The most common types of mappings we will use are transmorphisms,
epistemorphisms, and the combination of the two, homomorphisms. We give
their definitions in turn.

Basic maps Let P = 〈A,E, δ, E0, C〉 and Q = 〈B,F, µ, F0, D〉 be computa-
tional processes. There are many ways to map P to Q. The following definition
can be viewed as the most basic one.

Understanding Computation 23

Definition 17. Let f : A → B be continuous. We say that f is a transmor-
phism from P to Q (f : P → Q) if for every c ∈ C, the curve f ◦ c is an
element of D. If f is ‘onto’ and maps C onto D as well, then f is called
an epi-transmorphism. If f has a continuous inverse, then it is called an iso-
transmorphism.

In the definition it is implicit that, if f : P → Q is a transmorphism, then for
every c that is a computation of P , f ◦c is a computation of Q. In the sequel we
will use the definition also for mappings between processes that merely satisfy
the requirements for symbolically computational processes.

Example 4. Let P = 〈A,E, δ, E0, C〉 be a computational process. There trivially
are transmorphisms from P to P×P and from P×P to P (projection). However,
P and P × P cannot be iso-transmorphic, as topology tells us that there can
be no homeomorphism between a metric space A and its square (in general).

Epistemorphisms While one spectator may be observing a computation
through the lens of a knowledge space E, another spectator may do the same
from a different point of view, i.e. with a different knowledge theory in mind to
explain what he observes. For example, he may have a different ‘filter’ to ob-
serve what is happening in a computation, as long as the consistency conditions
remain satisfied in his theory.

In order to relate different views, we define the following ‘structural mor-
phism’ between knowledge spaces E and F .

Definition 18. An epistemorphism from E to F is any mapping τ : E → F
such that τ(E0) ⊆ F0 and for all Φ, Ψ ∈ E we have that, if Φ |=? Ψ in E, then
τ(Φ) |=? τ(Ψ) in F .

Example 5. A slide rule can be seen as a computational process facilitating
computations that lead from initial knowledge items [a, b,⊥] to knowledge items
[a, b, a · b]. However, it can also be seen as facilitating computations that lead
from initial knowledge items [x, y,⊥] to knowledge items [x, y, x+ y]. The epis-
temorphism that connects the two views interprets knowledge items [a, b, d] as
items [log10 a, log10 b, log10 d].

Epistemorphisms are a way of expressing that a different observer may ‘see’
another process in other terms. The following lemma expresses that computa-
tion is preserved under epistemorphisms.

Lemma 1. Let P = 〈A,E, δ, E0, C〉 be a computational process, F a knowledge
space, and τ : E → F an epistemorphism. Then Q = 〈A,F, τ ◦ δ, F0, C〉 is a
computational process, and EQ = τ(EP) = {τ(Ec) | Ec ∈ EP }.

Proof. One easily verifies that Q satisfies the requirements of a computational
process. By the definition of epistemorphisms, the consistency conditions that
hold in P , hold in Q as well. The equality of Q and τ(EP) follows because Q
has the same computations as P . ut

24 J. van Leeuwen and J. Wiedermann

Homomorphisms With the concepts as we have them now, we can finally
define a suitable notion of homomorphism for computational processes. Homo-
morphisms aim to relate the computational nature of different processes, by
‘translating’ both the curves and the knowledge build-up of one process into
those of another. In other words, what transmorphisms and epistemorphisms
do separately, is combined in the operation of a homomorphism.

Let P = 〈A,E, δ, E0, C〉 and Q = 〈B,F, µ, F0, D〉 be computational pro-
cesses.

Definition 19. A homomorphism from P to Q is any pair h = (f, τ) such that
f : A→ B is a transmorphism from P to Q, τ : E → F is an epistemorphism
from E to F , and the following commutative property holds: τ ◦ δ = µ ◦ f .

We will also use the definition for mappings between processes which are only
seen as being computational symbolically, i.e. purely as a mathematical con-
struct only.

The key property of homomorphisms is expressed in the following theorem,
which generalizes Lemma 1.

Theorem 2. Let P = 〈A,E, δ, E0, C〉 and Q = 〈B,F, µ, F0, D〉 be computa-
tional processes, and let h = (f, τ) be a homomorphism from P to Q. Then
τ(EP) = {τ(Ec) | Ec ∈ EP } ⊆ EQ. If f is epi, then τ(EP) = EQ.

Proof. Let c ∈ C be any computation of P and let a ∈ A be any action item
for which δ(c(a)) is defined (and thus an element of Ec). As f : A → B is a
transmorphism, we know that f ◦ c is a computation of Q, i.e. f ◦ c ∈ D. By
the commutative property of the constituent mappings we have

µ(f ◦ c(a)) = (µ ◦ f)(c(a)) = (τ ◦ δ)(c(a)) = τ(δ(c(a)).

This means that τ(δ(c(a)) ∈ Ef◦c and every element of Ef◦c is obtainable this
way. Thus τ(Ec) = Ef◦c and, consequently, τ(EP) ⊆ EQ.

If f is epi, then all computations of D are of the form f ◦ c for some c ∈ C.
In this case we have τ(EP) = EQ. ut

We distinguish the usual special cases of homomorphisms as needed. For
example, a homomorphism will be called an epimorphism if both its constituents
are epi. Note that, if f is epi, then by Theorem 2 we may as well restrict F to
τ(E) and consider τ to be epi as well. If h = (f, τ) maps P to Q and f is epi,
then Q is called a homomorphic image of P .

We will see important examples of homomorphic relationships between com-
putational processes in Section 6.

3.5 Determinacy

The curves that constitute the computations of a computational process P offer
but a ‘view’ of what goes on as the process develops in A. The curves may well
be projections of much deeper lying complex phenomena and environmental
interactions. Consequently, if two curves c, d : [0,∞) → A intersect at time t,
they need not coincide from that time onward.

Understanding Computation 25

Notation 2 For any curve c, let ct denote the curve from t onward.

We note here that ct1 = dt2 is short for saying that for every ρ ≥ 0, c(t1 + ρ) =
d(t2 + ρ).

If computations follow the same course after they intersect in some action
item, it may be seen as a sign of determinacy.

Definition 20. A computational process P = 〈A,E, δ, E0, C〉 is said to be op-
erationally deterministic if for every two curves c, d ∈ C and all t1, t2 ∈ [0,∞)
one has that, if c(t1) = d(t2), then ct1 = dt2.

If P is operationally deterministic and we have computations c, c′ ∈ C such
that c′ ‘visits’ cinit, then c necessarily is a subcomputation of c′.

Definition 21. A computational process P = 〈A,E, δ, E0, C〉 is said to be ob-
servationally deterministic if for every two curves c, d ∈ C and all t1, t2 ∈ [0,∞)
one has that, if δ(c(t1)) and δ(d(t2)) are both defined and δ(c(t1)) = δ(d(t2)),
then ct1 = dt2.

In stead of implying equality of ct1 and dt2 in definition 21, we could have
settled for the weaker conclusion that c and d generate the same knowledge
after t1 and t2, respectively. We will not require this here. (See also Subsection
7.1.) If a process is observationally deterministic, then this localizes the actual
generation of every knowledge item quite precisely.

Proposition 5. Let P = 〈A,E, δ, E0, C〉 be observationally deterministic. If a
knowledge item e of E is computable, then there is a unique action item α that is
reachable by a computation of C and has δ(α) = e. Moreover, all computations
of C that visit α follow the same trajectory afterwards.

Proof. This follows directly from Definition 21. ut

Proposition 6. Let P = 〈A,E, δ, E0, C〉 be a computational process, and as-
sume that δ : A → E is at least defined in all points of A that are ever visited
by a computation in C. Then, if P is observationally deterministic, P is also
operationally deterministic.

Proof. This follows directly from Definitions 20 and 21. ut

The following observation characterizes those computations that are opera-
tionally deterministic. The result is elementary but we give a complete proof.

Theorem 3. Let P = 〈A,E, δ, E0, C〉 be operationally deterministic. Then ev-
ery computation c of P is either loop-free (i.e. visits every item of A at most
once), ultimately constant (i.e. consists of a loop-free initial part ending in
one point where c remains constant), or ultimately periodic (i.e. consists of a
loop-free initial part followed by a non-trivial cycle).

26 J. van Leeuwen and J. Wiedermann

Proof. Let c be any computation of P . Assume that c is not loop-free, i.e.
suppose that for some T ≥ 0 there is an ε > 0 such that c(T) = c(T + ε). By
operational determinacy, c(t) = c(t+ ε) for all t ≥ T .

Claim. Either c(t) is constant for t ≥ T , or it is not and there is a smallest ε > 0
such that c(t) = c(t+ ε) for all t ≥ T .

Proof. Let S = {ε > 0 | c(t) = c(t + ε) for all t ≥ T}, and let η be the
greatest lower bound of S. If η ∈ S, we are done. Thus, assume η 6∈ S. Let
ε1 > ε2 > · · · be a decreasing sequence of elements of S that converges down
to η. Note that c(t) = c(t + ε1) = c(t + ε2) = · · ·. By continuity of c, we have
c(t) = limk→∞ c(t+ εk) = c(t+ η). When η > 0, this proves our claim.

If η = 0, we claim that now c(t′) = c(t) for every t′ ≥ t ≥ T . To show it,
consider any t′ > t. We construct a decreasing sequence ν1 > ν2 > · · · step by
step, such that c(t′) = c(t + νk) and 0 ≤ νk ≤ εk for all steps k we complete.
Starting with k = 1, write t′ = t+λε1+ν1, with integer λ such that 0 ≤ ν1 ≤ ε1.
Clearly c(t′) = c(t + ν1). If ν1 = 0 we have c(t′) = c(t + 0) = c(t) and we are
done.

Continuing inductively, suppose we have completed the (k− 1)-st step (k ≥
2) of the construction and obtained the (k− 1)-st element of the sequence with
0 < νk−1 ≤ εk−1. Choose an l ≥ k such that εl ≤ νk−1. (Such an l must exist as
the sequence ε1, ε2, · · · decreases towards 0.) Write νk−1 = λεl+νk, with integer
λ such that 0 ≤ νk ≤ εl. Clearly c(t′) = c(t+νk−1) = c(t+νk). If νk = 0 we have
c(t′) = c(t+ 0) = c(t) and we are done. Otherwise we note that we constructed
the k-th entry in the sequence, where 0 < νk ≤ εl and thus 0 < νk ≤ εk and
νk < εl ≤ νk−1.

We conclude that we either find that c(t′) = c(t) as desired, or obtain an
infinite decreasing sequence ν1 > ν2 > · · · such that c(t′) = c(t + νk) and
0 < νk ≤ εk for all k ≥ 1. As this sequence is majorized by the sequence of ε’s,
we have limk→∞ νk = limk→∞ εk = 0 and by continuity it follows that even in
this case c(t′) = limk→∞ c(t+ νk) = c(t+ 0) = c(t).

It follows that c either leads into an item where it ‘stays forever’, or it leads
into a non-trivial cycle, from which it will not escape. This completes the proof
of the claim.

Next, in case c ends in a constant point, we argue that there is a smallest T
such that for all t ≥ T , c(t) = c(T). For this, let S = {T | c(t) = c(T) for all t ≥
T}, a non-empty set. Let ρ be the greatest lower bound of S. If ρ 6∈ S, there
must be a decreasing sequence ρ1 > ρ2 > · · · in S that converges down to ρ.
Consider any t with t > ρ. Let l be an index such that ρl ≤ t (which must
exist). Then we have c(t) = c(ρl) = c(ρl+1) = · · · and thus, by continuity of c, it
follows that c(t) = liml→∞ c(ρl) = c(liml→∞ ρl) = c(ρ). Thus c(t) = c(ρ) for all
t ≥ ρ and, hence, ρ ∈ S, a contradiction. Thus ρ ∈ S. It follows that c consists
of a loop-free part until t = ρ and that c(t) = c(ρ) for all t ≥ T .

Finally, in case c ends in a non-trivial cycle, one can argue in a very similar
way that there must be a smallest T such that for all t ≥ T , c(t) = c(t + ε).
Here ε is the smallest cycle-length as established in the claim. (One easily sees
that this ε is unique and identical for all T that lie on the cycle.) It follows

Understanding Computation 27

that c consists of a loop-free part until t = T , followed by a cycle, i.e. such that
c(t) = c(t+ ε) for all t from then onward. ut

If an operationally deterministic computation is ultimately periodic, its cycle is
like an orbit of a system in dynamical systems theory. It serves as an attractor
for the given computation.

Given the result of Theorem 3, it is only a small step to obtain a character-
ization of those computations that are observationally deterministic.

Theorem 4. Let P = 〈A,E, δ, E0, C〉 be observationally deterministic. Then
every computation c of P is either a curve along which no knowledge item is
obtained more than once, an ultimately constant curve (i.e. consisting of an
initial part on which no knowledge item is obtained more than once but ending
in a point where δ(c(t)) is defined and c remains constant), or an ultimately
periodic curve (i.e. with an initial part on which no knowledge item is obtained
more than once followed by a non-trivial cycle which has at least some points
where δ is defined but all the defined knowledge items along it are different).

Proof. Let c be any computation of P . Assume that there are two different
points on c where δ gives the same knowledge item, i.e. suppose that there are
a T ≥ 0 and an ε > 0 such that δ(c(T)) and δ(c(T + ε)) are both defined
and δ(c(T)) = δ(c(T + ε)). Then, by observational determinacy, we have c(t) =
c(t+ ε) for all t ≥ T .

Now repeat the idea of the proof of Theorem 3, applying it to the set S =
{ε > 0 | c(t) = c(t + ε) for all t ≥ T and δ(c(t) defined}. We conclude that
either c has an initial part on which no knowledge items can occur more than
once and there is a T with δ(c(T)) defined and c(t) = c(T) for all t ≥ T , or
c leads into a cycle of ‘length’ ε > 0 and there is T with δ(c(T)) defined and
c(t) = c(t+ ε) for all t ≥ T .

By closer scrutiny of the remaining part of the previous proof, one may
argue that T can be chosen such that the part of c for t leading up to T satisfies
the constraint as stated in the theorem. ut

4 Computation - examples

The definition of computational processes and of computation was largely mo-
tivated on philosophical grounds. We now illustrate the concepts with a number
of examples that show the versatility of the approach. We include several ex-
amples of discrete computation, in anticipation of the more general treatment
of the very concept in Section 6.

In presenting the latter, we make use of discrete records and traces. A discrete
record is any map d : N→ A, which presumably represents some computation
c : [0,∞)→ A which is only observed at integer times. If it does, the record is
called a discrete trace. As a rule, only the discrete observations are known.

Given a discrete record d (of observations), it will be a trace only if there is
a computational process that somehow bridges the gaps from d(t) to d(t + 1),
for all t ∈ N, i.e. during the intermediate times. We often require that a trace

28 J. van Leeuwen and J. Wiedermann

is faithful, i.e. that the underlying computation c fills gaps such that no same
action items are visited in different gaps.

Definition 22. Let d be a discrete record. Then d is a discrete trace of com-
putation c if c(t) = d(t) for every t ∈ N. The trace is said to be faithful if
for any t1, t2 ∈ N with t1 6= t2, the segments {c(t) | t1 < t < t1 + 1} and
{c(t) | t2 ≤ t ≤ t2 + 1} are all disjoint.

We will give slightly more general definitions in Sections 6 and 7, when
we deal with the connection between continuous and discrete computation in
greater detail.

4.1 Finite-state systems

The first example deals with one of the most common models of computational
action, namely finite-state systems. We will show that these systems fit naturally
in our framework of computational processes.

For convenience we will model a finite-state system as a Moore machine,
which associates ‘output knowledge’ to states rather than to transitions [29]. A
Moore machine is a 6-tuple M = 〈S,Σ,Λ, s0, τ, U〉, where S is a finite set of
states, Σ the (finite) input alphabet, Λ the (finite) output alphabet, s0 ∈ S the
initial state, τ : S × Σ → S the state transition function, and U : S → Λ the
output function.

After being initialized to state s0, M reacts to a finite or infinite sequence
of input symbols σ1σ2 · · · by moving from state to state according to transition
function τ . Whenever a state is entered, the machine produces an output symbol
by calling on U . By allowing ‘empty symbols’ λ (with the obvious meaning), we
may assume that M always processes infinite sequences of symbols σ = σ1σ2 · · ·,
where σi ∈ Σ ∪ {λ} for i ≥ 1.

The processing of σ corresponds to a directed path, consisting of the con-
secutive states that are entered in the state transition diagram of M . This is
a discrete record dσ with dσ(t) = ‘the t’th state that is entered in processing σ′

(t ∈ N). Our aim is to show that the records are faithful discrete traces of the
computations of a suitable computational process.

In order to prove this, we could simply embed the state transition diagram
of M in the 2-dimensional plane and view dσ as a ‘sampling’ of the curve that
cycles through the points in the plane that correspond to the consecutive states
that are passed in processing σ. However, when the state transition diagram is
not planar, and most likely it isn’t, this straight embedding would unavoidably
lead to curves with segments that can intersect outside of the observed time
moments t ∈ N. It shows that the records are discrete traces of some process,
but the traces so obtained are generally not faithful.

In stead, consider the action space A = R3, with the usual metric. We note
the following basic fact from the theory of graph drawing.

Lemma 2. The state transition diagram of every Moore machine (incl. λ-
transitions) can be embedded in 3-dimensional space such that all states are
mapped to grid points and all labeled arcs are mapped to disjoint piecewise-
linear paths with at most two bends per path.

Understanding Computation 29

Proof. Let M = 〈S,Σ,Λ, s0, τ, U〉 be a Moore machine. Extend the state tran-
sition diagram for τ by adding ‘self-loops’ labeled λ to every state. Let G be
the resulting labeled directed graph.

Split all arcs of G by adding an auxiliary node and all self-loops by adding
two. Let G′ be the undirected graph obtained by subsequently omitting all
labels and directions. G′ is a simple undirected graph, with no parallel edges
and also no self-loops.

Now, it is well-known that every undirected graph admits a Fary embedding
in the 3-dimensional grid, with non-intersecting edges [13]. Consider this em-
bedding of G′, turn the auxiliary nodes into bending points, and add the labels
and directions back in. This gives an embedding of G as claimed. ut

Embed the state transition diagram of M into A = R3 as specified in Lemma
2. Let E be the knowledge space consisting of the symbols of Λ, with the trivial
inference relation. Define the semantic map δ : A → E such that δ(a) = U(s)
when point a corresponds to state s in the embedding and δ(a) = undefined
otherwise. Let E0 = {U(s0)}.

Finally, consider all possible discrete records processed by M . View every
record dσ as a ‘sampling’ of the curve cσ which cycles from state to state accord-
ing to the processing of σ in the embedded state transition diagram, following
the (disjoint) segments that connect the states during the gaps. Let C consist of
all curves that can be obtained this way. Trivially, all c ∈ C satisfy the required
consistency conditions.

We conclude that the defined process P = 〈A,E, δ, E0, C〉 is (symbolically)
computational. The discrete records of M are seen to be faithful discrete traces
of the computations of P . We conclude:

every finite-state system is a (symbolically) computational process, ob-
served at discrete time moments.

We note that all computations produced by P are piecewise-linear curves, all
with bending points on the grid.

In Section 9 we show that similar conclusions hold for all kinds of infinite-
state systems as well. This includes many computing systems as they are known
today, from theoretical models like Turing machines and extended versions of
it, to practical devices like digital computers and the internet.

4.2 Analog computers

The next example deals with the domain of analog computation [25]. As opposed
to digital computers, analog machines make inherent use of continuous variables.
We will argue that our framework includes analog computation in a natural way.
We base the example on a rendering of digital computing in [45].

We first need a reference model of analog computation. At an abstract level,
we may view an analog computer as consisting of a finite number of physical
registers that can all be adjusted by a continuous process (only). Registers
can contain any real number, possibly from a qualified set, and may be used
for computing or control as in digital machines. Programs can trigger chains

30 J. van Leeuwen and J. Wiedermann

of operations on the registers of the analog computer, where the adjustments
of the registers proceed continuously in time and, when imposed, within the
constraints set for them.

Consider an analog machine M , and let J, I1, · · · , Ik be the registers of M
(k ≥ 1). Here J is a control register, I1 the input register, I2 up to Ik−1 are
intermediate registers, and Ik is the output register. Let S be a set of allowable
programs. Programs π ∈ S running on M can be seen as performing continuous
transformations of the contents of I1, · · · , Ik in according to the instructions of
the program. We assume that the J register is changed (from 0 to 1) only in the
last instruction of a program, if the program ends at all. For control purposes
we assume that the machine has a continuous clock that starts at t = 0. Our
aim is to show that the operation of the programs of M corresponds to the
computations of a computational process P .

To achieve this, we define the components of P that we need for it. First of
all, let the action space A equal S × [0,∞) × Rk+1. With the discrete metric
on S and the usual metrics on [0,∞) and R, A becomes a metric space (with
the product metric). An action item 〈π, t, J, I1, · · · , Ik〉 essentially represents the
snapshot of a program π at time t, executing its btc+ 1-st instruction and with
register contents at time t equal to J, I1, · · · , Ik. When π is run on M with input
a ∈ R, it starts with action item 〈π, 0, 0, a, 0, · · · , 0〉 (thus with t = 0, J = 0
and I1 = a). We assume that the btc + 1-st instruction of π begins at time
btc and gradually changes the contents of I1, · · · , Ik by its choice of continuous
operations of M . It completes by time btc+ 1, and then the next instruction is
begun, and so on. All this time, the J-register remains unchanged.

If a program π happens to come to a final instruction, say at time btc, we
assume that the J-register is changed as well, from 0 to 1 (by a continuous pro-
cess). In this way, termination of a program becomes ‘noted’ in an action item.
We assume that, after the final instruction is completed, the program ‘cycles’
from then onward, by letting the t-value run on forever without changing the
registers any further. Clearly, the action items provide the proper information
for an observer to monitor the programs.

Let E consist of the knowledge items 〈f, a,2〉 (2 meaning ‘no knowledge’)
and 〈f, a, b〉, where f : R → R is any partial function, a ∈ R, b ∈ R ∪ {⊥} and
f(a) = b. E is the knowledge space of all single-parameter partial functions, with
a trivial reasoning system based on straightforward inferences like 〈f, a,2〉 |=
〈f, a, b〉 when f(a) = b.

Let the spaces A and E be linked by a semantic map δ defined as follows:

δ(〈π, t, J, I1, · · · , Ik〉) =

if t = 0, J = 0, I1 = x and Ij = 0 (2 ≤ j ≤ k),
indicating that execution of π is initialized:
〈fπ, x,2〉

if J = 1, and y appears in the output register Ik:
〈fπ, x, y〉

otherwise:
undefined

where fπ is the partial function determined by program π. Furthermore E0 =
{〈fπ, x,2〉 | π ∈ S, x ∈ R}.

Understanding Computation 31

For any program π ∈ S and input x ∈ R, define cπ,x : [0,∞) → A as the
map with

cπ,x(t) =“the action item 〈π, x, J, I1, · · · , Ik〉 ∈ A, reached at time t in
the execution of π on M , on input x.”

By the chosen metric in A, every cπ,x is continuous and thus defines a curve in
A. One also sees that the consistency conditions are trivially satisfied along
this curve. Hence, taking C = {cπ,x | π ∈ S, x ∈ R}, we conclude that
P = 〈A,E, δ, E0, C〉 is a computational process. It follows that every cπ,x is
a computation.

It remains to confirm that the computations of P deliver what the observer
wants to ‘know’. Given π ∈ S and input x ∈ R, we see that the knowledge
computed by cπ,x (or, as we might say, by π on input x) is equal to {〈fπ, x,2〉}
if π does not terminate on x (i.e. if the J register remains 0), and equal to
{〈fπ, x,2〉, 〈fπ, x, y〉} if π does terminates on x (i.e. if register J turns into 1
in finite time) with defined output. The former corresponds to fπ(x) = ⊥, the
latter to fπ(x) = y.

We conclude that, under the assumptions as we made them, analog com-
putation is computation, according to our definition. We note that the same
conclusion can be obtained for many other systems in which physical or chem-
ical quantities are traced and evolved by explicit or implicit ‘programs’, in-
cluding metabolic processes in cells, neural networks, and all kinds of molecular
machines.

In the example, the observer will gather only little information about what-
ever is ongoing in the computational process P . In a different scenario, i.e. by
using a different semantic map, the spectator may observe a larger part of the
action of a computation as it is unfolding in the action space. Whether this
is feasible or not depends on the observational means that are available to an
observer.

4.3 Reasoning

In the 17-th century, Leibniz dreamed of having formal systems that would
enable one to express argumentations and verify these by ‘rational calculation’
[36]. Nowadays, automated reasoning systems and interactive proof assistants
are standard computer applications. In the final example in this section we will
show that deductive reasoning is an instance of (discrete) computation.

Consider any formal system F , with set of axioms S and set of inference
rules D. Let the sentences of F be expressible using the symbols of a finite
alphabet Σ, with |Σ| = k. A reasoning (or: proof) in F is any finite or infinite
sequence π = π0, π1, · · · with the property that for every i ≥ 0, πi is either an
element of S or follows by applying a rule from D to one or more sentences
πj with j < i. We assume that finite proofs are always extended to infinity, by
simply repeating their last sentence ad infinitum, and, hence, that all proofs
are infinite.

We envision that reasonings are generated routinely, in some targeted man-
ner. Our aim is to show that the process of generating proofs π can be viewed
as being computational.

32 J. van Leeuwen and J. Wiedermann

We will deal with proof segments as ‘strings’ but only after identifying them
with a counterpart in some metric action space. Let $ and 0 (‘zero’) be new
symbols, i.e. $, 0 6∈ Σ. Let B be the set of all strings σ = $σ0$ · · · $σi$, with
i ≥ 0 and σ0, · · · , σi arbitrary sentences of F . Before defining the action space of
choice, note that every string σ ∈ B corresponds uniquely to a natural number
eval(σ), using k+ 2-ary notation with the digits of {$}∪Σ ∪{0} (with $ being
the largest digit and 0 the smallest). Clearly:

eval($σ0$) < eval($σ0$σ1$) < eval($σ0$σ1$σ2$) < · · ·

Now let A = R2. Action items in A will be of the form 〈r, y〉, where r
corresponds to some stage in ‘computing’ a proof and y can be seen as a control
field that will tell the observer whether ‘observable’ progress has been made in
the process. Let str : A→ B be the ‘retraction’ defined by:

str(〈r, y〉) =

if r ∈ N, y = 0 and r = $σ0$ · · · $σi$ in k + 2-ary notation:

$σ0$ · · · $σi$ (as a string)
otherwise:

undefined

Note that str(〈eval(σ), 0〉) = σ, for all σ ∈ B. Also, for all 〈r, y〉 ∈ A, if
str(〈r, y〉) is defined, then y = 0 and eval(str(〈r, y〉)) = r.

From an informational viewpoint, the i-th step of a proof π not only pro-
duces πi but the entire multiset {π0, · · · , πi} of F (i ≥ 0). It is thus natural to
let E consist of all finite multisets of sentences of F . Now define relation |= on
E such that for any two multisets E1, E2 ∈ E: E1 |= E2 if and only if for every
α ∈ E2, either α ∈ E1 or α follows by applying a rule from D to a number
of elements of E1. This gives a proper inference relation on subsets of F , thus
turning E into a proper knowledge space.

In order for an observer to interpret the action items in A, let the semantic
map δ : A→ E be defined as follows:

δ(〈r, y〉) =

if str(〈r, y〉) is defined and equal to $σ0$ · · · $σi$ (as a string):
{σ0, · · · , σi} (as a multiset)

otherwise:
undefined

Note that δ(〈r, y〉) is defined only if r ∈ N and y = 0, and that it ‘extracts’
exactly the multiset of sentences (‘knowledge’) that is encoded in r when its
k + 2-ary expansion is of the right form. Let E0 consist of all singleton subsets
of F .

For any proof π = π0, π1, π2, · · · in F , define the map cπ : [0,∞) → A as
follows:

cπ(t) =

if t = i+ ε for i ∈ N and 0 ≤ ε ≤ 1

2 :
〈(1− ε) · eval($π0$ · · · $πi$) + ε · eval($π0$ · · · $πi+1$), 2ε〉

if t = i+ ε for i ∈ N and 1
2 ≤ ε ≤ 1 :

〈(1− ε) · eval($π0$ · · · $πi$) + ε · eval($π0$ · · · $πi+1$), 2− 2ε〉

Thus, cπ is the ‘map’ that leads from action item 〈eval($π0$ · · · $πi$), 0〉 to
action item 〈eval($π0$ · · · $πi+1$), 0〉 for i from 0 to ∞, by moving by straight

Understanding Computation 33

lines to and from action item 〈12 ·(eval($π0$ · · · $πi$)+eval($π0$ · · · $πi+1$)), 1〉
in 2-space, for every i.

With the common metric in A, every cπ is continuous and thus a curve in
A. Also note that the action items 〈r, y〉 on the path of cπ for which δ(〈r, y〉) is
defined are precisely the action items of the form 〈eval($π0$ · · · $πi$), 0〉 (i ≥ 0),
and these items have δ-value equal to {π0, · · · , πi}. It follows that the consistency
conditions are satisfied along every curve cπ.

Taking C = {cπ|π is a proof in F}, we can conclude that P = 〈A,E, δ, E0, C〉
is a valid (symbolically) computational process. Hence, every cπ is a computa-
tion, namely the one that gives the observer all he needs to know in order to
infer the consecutive steps of π. It is useful to look at his more closely.

Note that observer only needs to observe a computation cπ at integer times.
Namely, he would only need the discrete trace dπ : N→ A with dπ(i) = cπ(i) =
〈eval($π0$ · · · $πi$), 0〉 for i from 0 to ∞. As cπ does not intersect itself, every
record dπ is not just a discrete trace but a faithful discrete trace of cπ. We
may as well define dπ(i) = eval($π0$ · · · $πi$) and declare dπ to be a faithful
projection of cπ. This property is the hallmark of ‘discrete computation’. This
will be analyzed in great detail in Section 9.

4.4 Reflection

The examples illustrate the duality of the framework as we defined it. On the one
hand there is an ‘actor’ operating in action space, on the other hand there is the
‘spectator’. The action spaces are the realm of ‘computation’ but, clearly, not
every curve qualifies for it. Which curves do, is fully determined by the spectator
who must be able to make sense of them. In particular, for the generative process
to be computational, it is required that the reasoning system of the spectator
is able to see the outcomes as generated knowledge. It conforms to the earlier
view that the notion of computation is inherently observer-dependent.

In the examples we chose to illustrate the mathematical framework of com-
putational processes as defined. The (logical or physical) realizability of the
computational processes we defined is assumed to be implicit in the cases as
they are given. In other words, we do not create new processes but merely ‘mold’
existing ones in the right frame in order to be viewed as being computational.

5 Operations on computational processes and computations

In this report we view computation as a phenomenon, interpreted and signified
by an observer using a suitable knowledge theory. We gave a broad definition of
the concept of computational process, to describe the generation of computa-
tions in a tangible way. Computations are then ‘observed’ as curves in a suitable
action space which satisfy the consistency conditions for knowledge generation,
according to the criteria of (the theory of) the observer. It gives a philosophical
grounding of the concept of computation, in the spirit of Turing’s suggestion
from 1948.

We will now expand on the approach. Our aim is to treat computational
processes and computations as mathematical abstractions and explore their key

34 J. van Leeuwen and J. Wiedermann

properties as recognized from an observer’s perspective. This will lead to a
mathematical theory that is very different from the classical ‘theory of compu-
tation’, focused more on computation as a notion. The theory will also enable
us to address the detailed connection between discrete and continuous compu-
tation.

In this section we will first consider various kinds of constructions which one
may carry out. We illustrate this by various examples such as the composition
of processes and some ways of combining knowledge sets. Ultimately, we end
up with a number of techniques for creating new (artificial) computational
processes from old ones.

5.1 Re-timing computations

While computational processes are basic, they do not tell us much about the
way the individual computations are actually generated. The main computa-
tional activity as it is observed will appear to the observer as a continuous
transformation of items in the action space, but most likely other features are
observed as well. Examples include the timing of the computation, and the use
of various resources (i.e. by the computational process). This suggests various
ways of manipulating processes.

A typical type of transformation is the following. It expresses the possibility
of accelerating or decelerating computations. Let P = 〈A,E, δ, E0, C〉 be a
computational process. For any function g : [0,∞) → [0,∞), let Cg = {c ◦ g |
c ∈ C}.

Lemma 3. Let g : [0,∞) → [0,∞) be continuous and non-decreasing, with
g(0) = 0. Then Pg = 〈A,E, δ, E0, Cg〉 is a (symbolically) computational process,
and EPg ⊆ EP . If g is strictly increasing, then EPg = EP .

Proof. Clearly, for any c ∈ C, c ◦ g is a curve in A again. The fact that g is also
non-decreasing and has g(0) = 0 guarantees that, if c is a computation, then so
is c◦g. This follows by checking that the consistency conditions for c◦g continue
to be satisfied. It follows that Pg is computational, at least symbolically. We
clearly have EPg ⊆ EP , as all computations of Pg are tracing computations of
P . If g is 1− 1, then EPg = EP . ut

A function g as in Lemma 3 may be seen as a ‘dial’ for controlling the speed of
P . If the dial is turned up (g(t) > t) then P runs ‘faster’, if the dial is turned
down (g(t) < t) then P runs slower. Note that re-timing has no effect on the
knowledge that is generated in a computation, only on the moments in time
that specific knowledge items are produced - if they are.

Definition 23. Let g : [0,∞)→ [0,∞) be continuous and non-decreasing, with
g(0) = 0. The Pg is called a re-timing of P . If g is 1 − 1, then we speak of a
strict re-timing.

The following examples illustrate the concept of re-timing.

Understanding Computation 35

Example 6. Let P = 〈A,E, δ, E0, C〉 be a computational process. Let function
g : [0,∞) → [0,∞) be defined by: g(t) = βt for t ≥ 0, for some β > 0. The
(strict) re-timing of P by means of g transforms any computation c ∈ C into
a computation c′ defined by c′(t) = c(βt). Computation c′ may be seen as the
‘speed-up’ (if β > 1) or ‘slow-down’ (if β < 1) of c by a factor β.

Example 7. Let P = 〈A,E, δ, E0, C〉 be a computational process. Let function
g : [0,∞)→ [0,∞) be defined by: g(t) = t for 0 ≤ t ≤ 1000 and g(t) = 1000 for
t > 1000. Re-timing computations by g means that every curve c is transformed
into a curve c′ : [0,∞) → A defined by c′(t) = c(t) for 0 ≤ t ≤ 1000 and
c′(t) = c(1000) for t > 1000. If c is a computation, then so is c′. Hence, by
Lemma 3, process Pg = 〈A,E, δ, E0, Cg〉 with Cg = {c′ | c ∈ C} is symbolically
computational. One may argue that it is, in fact, computational. The ‘dial’ g
transforms P into a process Pg that ‘freezes’ every computation of P at time
1000. (Note that two computations c that are identical up to time 1000 but
differ later, are mapped to the same c′.)

5.2 Switching and composing computations

Let P = 〈A,E, δ, E0, C〉 be a computational process. In order to generate a
computation d, P presumably has to be set to an initial position dinit and act
from there. If this initial position is not readily available, one may attempt to
‘jump-start’ d, by calling on an auxiliary computation c to lead up to this action
item first. Could this be done as a single computation?

It is implicit in the way we defined computation that, once it is produced
by P , a computation c unfolds as a curve in time uninterruptedly. If we choose
to use c as suggested above, or experiment with it otherwise, then we will need
to halt c at some point so we can switch over to another computation d of P
(or of another process altogether), from there onward. The idea is that c brings
P to an observable point x in A, with x = dinit and thus, with δ(x) ∈ E0. This
may be repeated.

These considerations leads us to the notion of composition, both for pairs
of curves and for sets, as follows. (A first version was given in [45].)

Definition 24. Let c, d be curves in A and let T ∈ [0,∞). If c(T) = dinit and
δ(c(T)) is defined, then c ◦T d is the curve defined by

c ◦T d (t) =

{
if 0 ≤ t ≤ T then: c(t)
if t ≥ T then: d(t− T)

If the preconditions are not satisfied, we say that c ◦T d is undefined.

The composed curve c ◦T d, when defined, is well-defined as a curve for any
T ∈ [0,∞). The following associativity property is easily verified.

Lemma 4. Let b, c and d be curves in A, let T1, T2 ∈ [0,∞) with T1 ≤ T2,
and let b(T1) = cinit and c(T2 − T1) = dinit. If δ(b(T1)) and δ(c(T2 − T1)) are
defined, then (b ◦T1 c) ◦T2 d = b ◦T1 (c ◦T2−T1 d).

36 J. van Leeuwen and J. Wiedermann

When we compose curves c and d that are computations of P , i.e. when
c and d satisfy the consistency conditions, then the explicit requirement in
Definition 24 that δ(c(T)) should be defined may well be omitted: it is implicit
in the requirement that c(T) = dinit. In this case, the requirements on δ may
be omitted in Lemma 4 as well.

If c and d are computations, they remain effective as individual components
of c ◦T d (when defined). However, more can be said. The following Lemma is
crucial.

Lemma 5. Let c and d be curves that satisfy the consistency conditions (with
respect to the knowledge theory for P), and let T ∈ [0,∞). If c(T) = dinit, then
c◦T d is well-defined and satisfies the consistency conditions again (with respect
to the same knowledge theory for P).

Proof. It is immediate that c◦T d is well-defined. For proving that c◦T d satisfies
the consistency conditions, we check them one at a time. First of all, note that
(c ◦T d)(0) = c(0) and thus, δ((c ◦T d)(0)) = δ(c(0)) ∈ E0.

To verify the second consistency condition, consider any t1, t2 ∈ [0,∞) with
t1 ≤ t2. If t2 ≤ T , then (c ◦T d)(t1) = c(t1) and (c ◦T d)(t2) = c(t2). If T ≤ t1,
then (c◦T d)(t1) = d(t1−T) and (c◦T d)(t2) = d(t2−T). In both cases it follows
that δ((c ◦T d)(t1)) |=∗ δ((c ◦T d)(t2)), as this holds for c and d respectively.

If t1 ≤ T ≤ t2, then (c ◦T d)(t1) = c(t1) and (c ◦T d)(t2) = d(t2 − T). Thus
δ((c ◦T d)(t1)) |=∗ δ(c(T) and δ(dinit) |=∗ δ((c ◦T d)(t2)). As c(T) = dinit, we
conclude that δ((c ◦T d)(t1)) |=∗ δ((c ◦T d)(t2)), by transitivity of |=∗.

We conclude that c ◦T d satisfies the consistency conditions in A (w.r.t. the
same knowledge theory as for c and d). ut

By Lemma 5 it follows that, if c and d are computations of P and c◦T d is well-
defined, then c ◦T d qualifies to be a computation again. Thus, if c ◦T d ∈ C,
then ‘jump starting’ d by c can be done in a single computation of P .

Clearly curves, and computations in particular, may be composed in many
ways. Note that c ◦T d is defined for every T ≥ 0, as long as c(T) = dinit and
δ(c(T)) is defined. When c is loop-free, i.e. visits every item of A at most once,
then at most one curve can be obtained this way. Otherwise, one may obtain
as many curves as c visits item dinit. (Note that the curves that are so obtained
are not necessarily all different.)

We now define composition for sets of curves, as follows.

Definition 25. Let C,D be sets of curves. The set of all compositions of curves
in C and D is C 4 D = {c ◦T d| c ◦T d is defined}.

Lemma 6. Let B, C and D be arbitrary sets of curves. Then (B 4 C)4 D =
B 4 (C 4 D).

Proof. This follows immediately from Lemma 4. ut

With the basic facts in place, we turn to computational processes again. We
note that, if the curves in C and D all satisfy the consistency conditions then,
by Lemma 5, so do all curves in C 4 D. We write c4 d instead of {c} 4 {d}

Understanding Computation 37

when convenient. By Lemma 6, we can write c1 4 c2 4 · · · 4 ck for any curves
c1, · · · , ck without ambiguity.

Definition 26. A computational process P = 〈A,E, δ, E0, C〉 is said to be
closed under composition if for all c, d ∈ C: c4 d ⊆ C.

When P is closed under composition, we will also call it compositional. If P
is understood, we will refer to C as being closed under composition when we
mean that P is.

Theorem 5. Every computational process P has a well-defined compositional
closure, i.e. there is a unique process P = 〈A,E, δ, E0, C〉 with smallest C such
that C ⊆ C and for every c, d ∈ C : c4 d ⊆ C.

Proof. Let L be the cpo of all sets of curves D with C ⊆ D. Define the operator
F : L→ L by F (X) = X∪(X4C). We note that by Lemma 5, when all curves
in X satisfy the consistency conditions w.r.t. E, then so do all curves in F (X).
The closure of C is the least Y ∈ L such that F (Y) = Y , if it exists.

Observe that F is chain-continuous, i.e. for any chain C1 ⊆ C2 ⊆ · · · in L
we have F (C1) ⊆ F (C2) ⊆ · · · and F (

⋃
i≥1Ci) =

⋃
i≥1 F (Ci). By the Tarski-

Kantorovich fixed-point theorem, supi F
i(C) is a fixpoint of F and, in fact, it

is the least fixpoint of F in L. By induction it easily follows that all curves in
supi F

i(C) satisfy the consistency conditions w.r.t. E. Taking C = supi F
i(C),

the theorem follows. ut

An alternate proof of Theorem 5 may be obtained by observing that the
following extensional definition satisfies the requirements: C = {c1 4 · · · 4 ck |
k ≥ 1 and c1, · · · , ck ∈ C}.

5.3 Composing processes

It is evident how one can extend the notion of composition as defined from sets
of computations to computational processes. Composition makes it possible to
‘observe’ computations that are the result of applying different computational
processes in a row.

We note that even the parallel composition (‘direct product’) of processes
can be defined in the present framework, as follows.

Definition 27. The parallel composition of processes Pi = 〈Ai, Ei, δi, Ei0, Ci〉
(1 ≤ i ≤ n) is the computational process P = 〈A,E, δ, E0, C〉 with

– A = A1 × · · · × An, the space of action item tuples with a product- or sup
metric imposed,

– E = E1× · · · ×En, the space of knowledge item tuples with component-wise
entailment, and

– δ = δ1 × · · · × δn, E0 = E1
0 × · · · × En0 and C = C1 × · · · × Cn.

Observe that for any curves ci ∈ Ci (1 ≤ i ≤ n), the product map c =
(c1, · · · , cn) : [0,∞) → A is continuous in any of the defined metrics on A and

38 J. van Leeuwen and J. Wiedermann

thus is a curve again. Hence, the parallel composition of P1, · · · , Pn is well-
defined as a process.

Parallel composition of processes as defined, assumes that the processes
involved all start at the same time and operate ‘at the same speed’. As in
general process theory, one could qualify the product operator by allowing for
different modes of re-timing for the individual processes. We do not explore this
further in this report.

5.4 Combining knowledge sets

Given computational processes P = 〈A,E, δ, E0, C〉 and Q = 〈B,E, µ,E0, D〉
with the same knowledge spaces and defined sets of initial knowledge, it is
natural to ask how the knowledge sets they can generate might be combined.
In this Section we consider a number of options for it.

Lemma 7. Let P = 〈A,E, δ, E0, C〉 and Q = 〈B,E, µ,E0, D〉 be as given.
Then there is computational process R such that ER = EP ∪ EQ.

Proof. Re-define P (or Q) such that the action spaces of P and Q are disjoint.
Now let R be the ‘union’ of P and Q. ut

For a further property in this context we need the following concept, which
fits in our earlier discussion of re-timing computations.

Notation 3 For any c ∈ C, let cT be the curve defined by cT (t) = c(0) for
0 ≤ t ≤ T and cT (t) = c(t− T) for t ≥ T .

Clearly, for any T ≥ 0, curve cT is a computation again, i.e. it satisfies the
consistency conditions with respect to the knowledge theory of P .

Definition 28. A computational process P = 〈A,E, δ, E0, C〉 is said to be
closed under delayed start, if for every c ∈ C and T ∈ [0,∞) one has that
also cT ∈ C.

Lemma 8. Let P = 〈A,E, δ, E0, C〉 and Q = 〈B,E, µ,E0, D〉 be as given, and
assume that P and Q are closed under delayed start. Then there is a computa-
tional process R such that ER\(E0 × E0) = EP ∩ EQ.

Proof. Consider the process R = 〈A× B,E ∪ (E0 × E0), κ, E0 ∪ (E0 × E0), F 〉
with the following components:

– E ∪ (E0 × E0) is the knowledge space with core set E0 ∪ (E0 × E0) and an
inference relation |=r which obeys the following set of rules, where |= is the
inference relation for E:
• first, the expected inferences for single and pairs of knowledge items:
∗ Φ |=r Ψ if Φ, Ψ ∈ E and Φ |=∗ Ψ ,
∗ (Ψ,Π) |=r (Ψ ′, Π ′) if Ψ, Ψ ′, Π,Π ′ ∈ E and Ψ |=∗ Ψ ′ and Π |=∗ Π ′.

• next, the inferences to ‘produce’ single knowledge items, if these items
can be derived in both components of a pair simultaneously:
∗ (Ψ,Π) |=r Φ if Ψ,Π,Φ ∈ E and Ψ |=∗ Φ and Π |=∗ Φ.

Understanding Computation 39

• and finally, the rules to guarantee that single knowledge items can be
used in deriving pairs again:
∗ Φ |=r (Ψ,Π) if Φ, Ψ,Π ∈ E and Φ |=∗ Ψ and Φ |=∗ Π.

The rules guarantee that |=r is reflexive and transitive, as required for an
inference relation. (Notice that the first rule is superfluous, as it is implied
by the other rules.)

– κ : A×B → E is the semantic map such that:
• κ(a, b) = (δ(a), µ(b)) if δ(a), µ(b) ∈ E0 and δ(a) 6= µ(b),
• κ(a, b) = δ(a) if δ(a) = µ(b),
• κ(a, b) = ‘undefined’ otherwise.

– F consists of the curves 〈c, d〉 defined by 〈c, d〉(t) = (c(t), d(t)), for t ∈ [0,∞).

The definitions imply that, if c ∈ C and d ∈ D, then the curve 〈c, d〉 ∈ F is a
computation again, satisfying the consistency condition from its starting point
and onward. Thus, R is a computational process.

By definition of κ, ER\(E0 × E0) ⊆ EP ∩ EQ. To show equality, let Φ ∈
EP ∩EQ. Then there are computations c ∈ C and d ∈ D such that Φ ∈ Ec and
Φ ∈ Ed. Let t1, t2 ∈ [0,∞) be such that δ(c(t1)) = µ(d(t2)) = Φ. If t1 = t2, then
κ(〈c, d〉(t1)) = Φ and we are done. Otherwise, assume w.l.o.g. that t1 < t2. By
assumption on P we have that c(t2−t1) ∈ C. Now κ(〈c(t2−t1), d〉(t2)) = Φ. Hence
Φ ∈ ER. We conclude that ER\(E0 × E0) = EP ∩ EQ. ut

Corollary 1. Let P = 〈A,E, δ, E0, C〉 and Q = 〈B,E, µ,E0, D〉 be as given.
Let |E0| = 1, and assume that P and Q are closed under delayed start. Then
there is a computational process R such that ER = EP ∩ EQ.

Proof. This is immediate from the proof of Lemma 8. ut

5.5 Generating knowledge by expansion

Given a computational process P , one might use the knowledge P can generate
by its computations to expand the set E0, and use this expanded set to provide
P with the starting knowledge for new computations that were not ‘enabled’
before. By iterating this, one obtains a way of exploring a much larger subspace
of E than P does on its own. This process is studied in more detail in [45]. It
can be shown that the complete subspace of E that can be explored in this way
is well-defined subset of E.

In the following sections we consider the deeper structural, compositional
and computational properties of general computational processes.

6 Symbolic prototypes of computational processes

In the epistemic theory of computation, the observer plays a crucial role. When
observing a process P , his semantic ‘lens’ δ and actual knowledge theory E
determine which ‘curves’ of P qualify as computations and which do not. One
may argue that, in practice, it works the other way around: a set C of ‘intended
computations’ is given, and the question is which E and δ could ‘explain’ the
given curves as computations.

40 J. van Leeuwen and J. Wiedermann

In this section we wonder how one might understand a given set of curves,
generated by a process P , without fixing any particular knowledge theory E
ahead of time. What do we need, to explain the behaviour of the curves as
computations, at least in theory? And, what do different interpretations of P
as a computational process have in common?

Fix an action space A and a set of initial knowledge E0. Suppose we allow
the observer to use any possible semantic map δ, provided this map satisfies
the following constraints, for two given, non-empty subsets A0, A1 of A, with
A0 ⊆ A1:

- {a | δ(a) ∈ E0} = A0, and

- {a | δ(a) is defined} = A1.

In addition, suppose that the curves c that we will encounter always satisfy the
following base property:

- c(0) ∈ A0,

corresponding to the, reasonable, fact that curves must always start in an action
item with observable initial knowledge.

Now let C be a set of curves in A that we want to observe (‘explain’) as
being computations, subject to the given constraints. We show how, for every
C, one can always construct a process PC that is ‘symbolically computational’
and explains C ‘abstractly’ as computations, based solely on the ‘flow’ of the
curves. PC will be called the symbolic prototype of C.

Next we argue that the process PC exhibits the maximum possible knowl-
edge theory that may enable an observer to achieve an explanation of the curves
in C as being computations, in the following sense:

Let P = 〈A,E, δ, E0, C〉 be any computational process that ‘explains’ C
as a set of computations, subject to the constraints on the semantic map
δ and on the curves. Then P is a homomorphic image of PC .

As a consequence, the symbolic prototype of a set of curves C is a key ingredient
in answering the problem we deal with in this section. The question which E
and δ could ‘explain’ a given set of curves C as ‘computations’ is completely
reduced to the problem of finding a suitable homomorphism φ that maps its
symbolic prototype onto a concrete computational process.

We first give and explain the definition of symbolic prototypes. Next we
prove the key results for it.

6.1 Symbolic prototyping

Let A and E0 be fixed. Also, assume that the semantic maps δ and curves c
we allow, all respect the constraints given above. Let P be a process and C the
set of observable curves it can generate. When we observe C, what determines
that its curves are computations? This seems to be the essence of the question
what it is that makes P a computational process.

Understanding Computation 41

The crucial question is to what extent this issue depends on the curves in
C and to what extent on a specific knowledge theory used by the observer in
interpreting their effect. In this section we show that the two aspects are heavily
intertwined, i.e. the curves in C themselves determine the very knowledge theory
we need in arguing for their computationality.

Symbolic knowledge space In order to determine their computationality,
we have to capture the ‘dynamics’ of the curves in C, subject to the constraints
we assumed. The idea is that there is implicit information hidden in the curves
that we want to extract.

A key notion in modeling computations by curves is the gradually advancing
journey through consecutive items in A, by some mechanism that causes it. The
gradually advancing knowledge build-up is driven by the same dynamics. We
capture this as follows.

Let C be an arbitrary, non-empty set of curves in A. As stipulated above,
we assume that all curves of C are properly grounded: for all c ∈ C, we assume
that c(0) ∈ A0, i.e. δ(c(0)) ∈ E0. We do not assume beforehand that the curves
satisfy any further consistency conditions, with respect to any theory.

Define the knowledge space K = KC as follows. We give the definition in
parts: a core set KC

0 , the space KC , and a relation |=KC on KC , as follows:

KC
0 = {[a, c, t] | a ∈ A, c ∈ C, t = 0, c(t) = a, and a ∈ A0},

KC = KC
0 ∪
∪{[a, c, t] | a ∈ A, c ∈ C, c(0) ∈ A0, t > 0, c(t) = a, and a ∈ A1},

and

[a, c, t] |=KC [a′, c′, t′] if and only if c = c′ and t ≤ t′.

where in the latter definition we assume that the tuples [a, c, t] and [a′, c′, t′]
both belong to KC . Notice, in the definition of KC

0 , that we assumed that
c(0) ∈ A0 for all c ∈ C. Thus KC

0 , and hence KC , is always non-empty.
One readily observes that |=KC is an inference relation on the items of KC ,

and that KC is closed under inferencing. Hence, KC is valid as a knowledge
space. More specifically, the following lemma may be observed.

Lemma 9. KC is a theory-like knowledge space with core KC
0 .

Proof. We argued that KC is closed under |=KC , which is the requirement for
being a knowledge space. However, taking KC

0 as the core set, one easily shows
that KC is the closure of KC

0 under |=KC , i.e. within the space {[a, c, t] | a ∈
A, c ∈ C, t ∈ [0,∞), c(t) = a, and a ∈ A1}. Hence, KC is theory-like. ut

One may notice that KC consists of knowledge items that precisely repre-
sent the generic information on all action items that may potentially contain
knowledge – according to any δ – if A would be explored with curves from C,
without being specific on what the knowledge extracted by δ might be. KC only
depends on E0, the subsets A0 and A1 of A, and the curves in C, and not on
any specific knowledge theory.

42 J. van Leeuwen and J. Wiedermann

Taking the constraints as given, knowledge theory KC is completely deter-
mined by the behaviour of the curves in C. It is the abstract rendering of what
the curves can potentially explore. But, does this enable an observer to see the
curves of C as computations?

Symbolic process We now proceed to show that KC can be utilized as the
knowledge space of a symbolic process PC = 〈AC ,KC , δC ,K

C
0 ,MC〉. PC is called

symbolic, because at this stage we do not assume any pre-defined mechanism
that might ‘generate’ the curves of C.

In order to specify PC we have to define its action space, its semantic map,
and its potential set of computations. First we define its action space AC , as
follows:

AC = {〈a, c, t〉 | a ∈ A, c ∈ C, and t ∈ [0,∞)}.

AC represents the realm that can be maximally explored by means of the curves
of C, in a ‘full information’ sense. Note that AC = A × C × [0,∞) is a metric
space (with the discrete metric for C and the common product metric on the
space) and thus AC is a valid action space.

Next, we define the appropriate semantic map δC that ‘reads’ the items of
AC and interprets them in the knowledge theory KC :

δC(〈a, c, t〉) =

if [a, c, t] ∈ KC then: [a, c, t]

otherwise: undefined

Finally, we define the set of ‘computations’ of PC . As AC is a metric space,
it makes sense to try and interpret the curves of C as curves in AC . To this
end, for any c ∈ C, let cC : [0,∞)→ AC be the map defined by:

cC(t) = 〈c(t), c, t〉, for any t ∈ [0,∞).

Indeed, for any curve c ∈ C, the mapping cC is continuous as well and thus
a curve in AC . Hence, we can define a perfect ‘mirror set’ of C in PC , as follows.

MC = {cC | c ∈ C and c(0) ∈ A0}

Recall that we assumed that for all c ∈ C, c(0) ∈ A0 at the outset, but we
include it again for clarity. It is clear that MC is fully ‘isomorphic’ to C, differing
only in the full representation of its actions.

Definition 29. Process PC = 〈AC ,KC , δC ,K
C
0 ,MC〉 is called the symbolic

prototype of the set of curves C.

Considering the process PC = 〈AC ,KC , δC ,K
C
0 ,MC〉 as it is now defined,

we see that all components of PC depend solely on the set of curves C (and
the initial constraints). The crucial observation now is that PC can be shown to
be ‘symbolically computational’, i.e. the curves in MC satisfy the consistency
conditions even though we have left it fully open how the curves are generated.

Understanding Computation 43

Theorem 6. The symbolic prototype PC = 〈AC ,KC , δC ,K
C
0 ,MC〉 of any non-

empty set of curves C in A is symbolically computational.

Proof. We verify that the curves in MC satisfy the required consistency condi-
tions. The first condition requires that all curves have their starting knowledge
in KC

0 , but this follows by assumption. After all, requiring that for all cC ∈MC

we have δC(cC(0)) ∈ KC
0 is equivalent to requiring that for all c ∈ C we have

c(0) ∈ A0, and this was assumed for all curves in C.
For the remaining consistency condition, consider any curve cC ∈ MC and

any times t1, t2 ∈ [0,∞) with t1 ≤ t2. Without loss of generality, let t1 < t2.
Suppose that both δC(cC(t1)) and δC(cC(t2)) are defined, This means that
both [cC(t1), c, t1] and [cC(t2), c, t2] are defined in KC , and that consequently
[cC(t1), c, t1] |=KC [cC(t2), c, t2]. This proves that the required consistency of
knowledge build-up along every curve in MC is satisfied.

We conclude that PC is computational, symbolically. ut

The proof of Theorem 6 shows that the ‘dynamics’ of the curves in MC is suf-
ficient for obtaining valid computations, i.e. assuming only that the curves ‘start
right’ and ‘unfold as curves’ after that, but nothing more. Short of declaring
any set of curves to be computational, this shows the importance of an inter-
pretation of PC as a concrete process. Thus, the only piece that is still missing,
is some kind of ‘embodiment’ of the process, to perform the computations.

Lemma 10. Let PC = 〈AC ,KC , δC ,K
C
0 ,MC〉 be the symbolic prototype of

some non-empty set of curves C in A. Viewed as a symbolically computational
process, PC is both operationally and observationally deterministic.

Proof. Consider any two curves cC and dC of MC . If, for some t1, t2 ∈ [0,∞),
we have cC(t1) = dC(t2), then 〈c(t1), c, t1〉 = 〈d(t2), d, t2〉 and hence c = d
and t1 = t2. Thus, in particular, ct1 = dt2 . It follows that PC is operationally
deterministic.

Following a very similar line of argumentation, let δC(cC(t1)) = [c(t1), c, t1]
and δC(dC(t2)) = [d(t), d, t2] be defined and let δC(cC(t1)) = δC(dC(t2)). Then
necessarily c = d and t1 = t2, hence, ct1 = dt2 again. Thus PC is observationally
deterministic. ut

As a consequence, symbolic prototypes always are repeatable processes when
they are considered as being (symbolically) computational. See Subsection 7.1
for a further explanation of repeatable processes and their properties.

6.2 From symbolic prototype to computational process

Let us consider the lead question again. Thus, let C be a non-empty set of
curves in A. The question we consider is, whether and how an observer might
understand, or interpret, the curves in C as the possible product of a compu-
tational process, using a suitable knowledge theory and an adequate ‘looking
glass’ δ. Have we come close to an answer?

Clearly, for C to be understood as a set of computations, it is necessary that
the set of initial knowledge E0 and the semantic map δ of the observer satisfy

44 J. van Leeuwen and J. Wiedermann

the condition that δ(c(0)) ∈ E0, for all c ∈ C. What can we say if this condition
is satisfied? Is it sufficient?

Notice that, by choosing the ranges A0 and A1 in any way we want, subject
to the conditions that A0 ⊇ {c(0) | c ∈ C} and A1 ⊇ A0, a ‘symbolic prototype’
process PC is obtained with the following properties: it explains MC , a full
information rendering of C, and is, at least, symbolically computational, by
Theorem 6. Thus, the necessary condition above is close to being sufficient, at
least symbolically. However, more can be said.

Suppose that P = 〈A,E, δ, E0, C〉 is a computational process that indeed
‘explains’ C as being computational. Let A0 = {a | δ(a) ∈ E0} and A1 =
{a | δ(a) is defined}, and let PC = 〈AC ,KC , δC ,K

C
0 ,MC〉 be the symbolic

prototype as it is determined by A0 and A1 (and E0).

The following result shows how process P is intimately linked to process PC ,
for the choices of E0, A0 and A1 that apparently work to explain C as being
computational. Recall that EP is the set of all knowledge items generated by
the computations of a process P .

Theorem 7. Let P = 〈A,E, δ, E0, C〉 be a computational process, and let PC =
〈AC ,KC , δC ,K

C
0 ,MC〉 be the symbolic prototype as determined by A0 = {a |

δ(a) ∈ E0} and A1 = {a | δ(a) is defined} (and E0). Then P is a homomor-
phic image of PC , i.e. there are an epi-transmorphism f : PC → P , and an
epistemorphism τ : KC → E such that τ(EPC) = EP .

Proof. Let PC and P be as given. In order to show that P is a homomorphic
image of PC , we need to construct a mapping h = (f, τ) that satisfies the terms
of Definition 19 with f epi. Choose the constituent maps as follows.

Let f : AC → A be the map defined by f(〈a, c, t〉) = a, for all 〈a, c, t〉 ∈ AC .
As a map between metric spaces, f is seen to be continuous. To see that f is
a transmorphism, let cC be an arbitrary symbolic computation of PC , i.e. with
c ∈ C. Then f ◦ cC : [0,∞)→ A is the mapping defined by

f ◦ cC(t) = f(cC(t)) = f(〈c(t), c, t〉) = c(t),

and thus f ◦ cC ≡ c and hence f ◦ cC ∈ C. It follows that f is a transmorphism.
Also, f is clearly epi.

Next, define τ : KC → E by τ([a, c, t]) = δ(a), for any [a, c, t] ∈ KC (with
a ∈ A, c ∈ C and t ∈ [0,∞)). By the given specification of KC , τ is well-defined,
i.e. its values are all ‘defined’ on KC .

To verify that τ is an epistemorphism, first observe that τ(K0) ⊆ E0. This
is immediate from the definition of K0. Next, consider any two items [a, c, t] and
[a′, c′, t′] with [a, c, t] |=K [a′, c′, t′]. Then c = c′ and t ≤ t′ and, consequently, a
precedes a′ in time along the curve c. By the consistency conditions for P , it
follows that δ(a) |=E δ(a

′), in other words that τ([a, c, t]) |=E τ([a′, c′, t′]). This
proves that τ is an epistemorphism.

Finally, we note that the commutativity property holds: τ ◦ δC = δ ◦ f . This
follows because for any 〈a, c, t〉 ∈ AC , if a ∈ A1 then [a, c, t] ∈ KC and thus

τ ◦ δC(〈a, c, t〉) = τ([a, c, t]) = δ(a) = δ ◦ f(〈a, c, t〉).

Understanding Computation 45

If a 6∈ A1, then both τ ◦ δC(〈a, c, t〉) and δ ◦ f(〈a, c, t〉) are undefined.
The completes the proof that P is a homomorphic image of PC under the

mapping h = (f, τ). By Theorem 2 we have that τ(EPC) = EP . ut

For a direct proof that τ(EPC) = EP , notice that τ(EPC) = τ(
⋃
c∈C{[c(t), c, t] |

t ∈ [0,∞) and [c(t), c, t] ∈ KC}) =
⋃
c∈C{δ(c(t)) | t ∈ [0,∞) and δ(c(t)) defined}

= EP .

Considering the question again, when and how a given set of curves may be
regarded as being computational, we see that the symbolic prototypes of C are
crucial:

every concrete computational process P that ‘explains’ C as being com-
putational must be the homomorphic image of a symbolic prototype of
C. All processes P that do, can be obtained in this way.

Observe that the definition of a prototype PC for the set C relies purely on the
support of the δ of the observer, and on the elements of C as being curves. No
further facts of δ play a role. Indeed, prototypes do not even rely on any concrete
knowledge theory, other than what is implied by the ‘flow’ of the curves. Note
that one may always take E0 = {c(0) | c ∈ C}.

The task of finding a suitable prototype PC for C does not necessarily make
it any easier to determine a concrete computational process P for C. However,
in a nutshell, Theorem 7 tells us that symbolic prototypes represent the essence
of the process structure that is required.

6.3 From computational process to symbolic prototype

We now change our perspective, and consider sets of curves C which we know to
be computational. Let P = 〈A,E, δ, E0, C〉 be any computational process that
generates C. What is the essence of P ’s operation? And, what is the forcing
power behind the consistency conditions? These are only some of the deep
questions one may ask.

The symbolic analysis above suggests that the computational behavior of P
relies rather more on the ‘dynamics’ of the curves and the scope of the ‘lens’ δ
than on any specific details of the observer’s knowledge theory. Concretely, P ’s
qualities seem to depend solely on E0, the support of δ, and the curves in C
satisfying the consistency conditions. No detailed properties of E seem needed,
i.e. other than those implied by the definition of δ on the items of A. This can
be made concrete as follows.

Let P = 〈A,E, δ, E0, C〉 be as given. Define A0 = {a ∈ A | δ(a) ∈ E0} and
A1 = {a ∈ A | δ(a) is defined}.

Definition 30. The symbolic prototype PC = 〈AC ,KC , δC ,K0,MC〉 of C de-
termined by the sets A0 and A1 implied by P , is called the symbolic prototype
of P .

By Theorem 6 above, the symbolic prototype of P is ‘symbolically compu-
tational’. It may be viewed as abstracting the dynamics of P ’s computations,

46 J. van Leeuwen and J. Wiedermann

in a way that is independent of the concrete knowledge build-up (although this
is clearly what the process is supposed to do for us).

Two main theorems may now be observed which describe the distinguishing
features of symbolic prototypes. The first result characterizes precisely what
is abstracted in a prototype, i.e. when two different processes have the same
symbolic prototype.

Theorem 8. Let P = 〈A,E, δ, E0, C〉 and Q = 〈A,F, µ, F0, C〉 be computa-
tional processes. Assume that for all a ∈ A, δ(a) is defined if and only if µ(a) is
defined, and δ(a) ∈ E0 if and only if µ(a) ∈ F0. Then P and Q have the same
symbolic prototype.

Proof. This follows by equating the definitions of PC and QC , respectively. ut

The next result expresses the (mathematical) relationship between a com-
putational process P and its symbolic prototype PC . It is a reformulation of
the result in Theorem 7.

Theorem 9. Every computational process is a homomorphic image of its sym-
bolic prototype.

Proof. See the proof of Theorem 7. ut

Theorem 9 shows that symbolic prototypes are a valid abstraction of the
dynamical behaviour of a computational process. It is conceivable that the
prototype of a process P is computational again, e.g. in case the computations
in MC could be generated by a modification of the mechanism that generates
the computations in C. This could be imagined if the set C is countable.

Viewing PC as a symbolically computational process, Theorem 9 leads to
several useful further observations. The first observation completes the view of
PC as an abstraction of P .

Corollary 2. Let P = 〈A,E, δ, E0, C〉 be a computational process, and let
PC = 〈AC ,KC , δC ,K0,MC〉 be its symbolic prototype. Then there is an episte-
morphism τ : KC → E such that P and τ ◦ PC generate the same knowledge,
i.e. τ(EPC) = EP .

Proof. It is implicit in Theorem 7 that there is an epistemorphism τ : KC → E
such that τ(EPC) = EP . By Lemma 1, the set τ(EPC) is precisely the knowledge
set generated (symbolically) by the symbolic process τ ◦ PC = 〈AC ,K, τ ◦
δC ,K0,MC〉. ut

Finally, we observe the following interesting mathematical side-result.

Corollary 3. Let P be an arbitrary computational process. Then P is the ho-
momorphic image of a symbolically computational process that is both opera-
tionally and observationally deterministic.

Proof. By Theorem 9, P is a homomorphic image of its symbolic prototype PC .
By Lemma 10, PC indeed has the desired properties. ut

Understanding Computation 47

7 Observing computations

We now proceed with the study of computational processes, in the present
general setting. Let A be an arbitrary action space, with metric d, and let E
be a knowledge space. Let P = 〈A,E, δ, E0, C〉 be a computational process. In
the epistemic philosophy, observers play a crucial role, but what can they really
observe of a computation other than the knowledge that is generated? We first
consider repeatable processes. Next, we define operational and observational
discreteness for computational processes.

7.1 Repeatable processes

Computational processes are defined generally, without recourse to any descrip-
tion or, indeed, algorithm. This allows the general interpretations we aimed for.
Yet, in practice one will want a process to satisfy an important property that
tends to hold especially for ‘programmed’ systems: repeatability.

Definition 31. A computational process P = 〈A,E, δ, E0, C〉 is said to be re-
peatable if for every e ∈ E0, there is at most one c ∈ C such that δ(cinit) = e.

In repeatable processes, same initial knowledge leads to same computations.
Hence, repeatable processes ‘can be run again’ and are thus ideal if one wants a
process to be used for experimentation. Theoretically, repeatable computations
can be ‘indexed’ by their cinit.

Lemma 11. For every computational process P = 〈A,E, δ, E0, C〉 there is a
repeatable computational process Q = 〈A′, E′, δ′, E′0, C ′〉 and an epistemorphism
τ : E′ → E such that E = τ(E′) and for every c ∈ C there is a c′ ∈ C ′ such
that Ec = τ(E

′
c) (and vice versa).

Proof. Let P be as given. Consider the process Q = 〈A×C,E×C, δ′, E0×C,C ′〉
such that for every a ∈ A and c ∈ C we have that δ′([a, c]) = [δ(a), c] and
C ′ = {c′ | c ∈ C}, where for every c ∈ C, the map c′ : [0,∞)→ A×C is defined
by c′(t) = [c(t), c].

Let dA be the metric on A and dC the discrete metric on C. Then A × C
is a metric space any common product metric like the 2-product metric. One
easily verifies that every map c′ ∈ C ′ is a curve in A × C under this metric.
Furthermore, we note that E × C is a valid knowledge space, with inference
relation |=′ defined such that [e1, c1] |=′ [e2, c2] if and only if e1 |= e2 (in E) and
c1 = c2. We conclude that Q is a computational process.

We first observe that Q is a repeatable process. This follows because, if
for two computations c′, d′ ∈ C ′ one has that c′(0) = d′(0), then necessarily
c = d. Next, consider the mapping τ : E′ → E defined by τ([e, c]) = e. Clearly
τ is an epistemorphism. Also, consider any computation c ∈ C. Then for the
computation c′ ∈ C defined by c′(t) = [c(t), c] one has clearly has Ec = τ(E

′
c)

(and vice versa). ut

In the proof we assumed that the computations of C can be used to index
themselves. If they are determined by ‘programs’, one could use those in stead.

48 J. van Leeuwen and J. Wiedermann

Lemma 12. Observationally deterministic processes are repeatable.

Proof. This can be seen directly from Definition 21. ut

Note that, if Definition 21 had not been chosen the way it was, we would
not have been able to conclude now that observationally deterministic processes
are repeatable. We refer to Subsection 3.5 for a general characterization of the
computations generated by observationally deterministic processes.

7.2 Discrete processes

Let P = 〈A,E, δ, E0, C〉 be a computational process. Recall from Definition 13
that we identified the set {t | δ(c(t)) is defined} as the domain of the observable
trace of a computation c.

One may argue that an observer can only observe a computation at discrete
moments, and not continuously. If there is nothing more to be observed, this
would tell the observer all he can possibly distill from the computation. Then,
and only then, he can limit himself to the observed moments and to what
he observes at these times (for this computation). This leads to the following
definitions.

Definition 32. A process P = 〈A,E, δ, E0, C〉 is called operationally discrete if
for every computation c ∈ C, the set {t | δ(c(t)) is defined} has no accumulation
points (in R).

Definition 33. A process P = 〈A,E, δ, E0, C〉 is called observationally dis-
crete if for every computation c ∈ C, the set {c(t) | δ(c(t)) is defined} has no
accumulation points (in A).

We note here that a subset of a topological space has no accumulation points
if and only if it is closed (‘contains all its accumulation points’ - in this case
because the subset has none) and discrete (‘has only isolated points’). Note also
that {t | δ(c(t)) is defined} is never empty, as 0 always belongs to the set (due
to the consistency conditions). Consequently, the set {c(t) | δ(c(t)) is defined}
is never empty either.

Lemma 13. Let P be operationally discrete. Then for every computation c
of P , the set {t | δ(c(t)) is defined} is either finite, or countably infinite and
unbounded.

Proof. Let P be operationally discrete, and let c be a computation of P . Then
{t | δ(c(t)) is defined} must be a discrete set. By general topology it follows
that it is either finite or countably infinite. In the latter case, the set must
be unbounded. For, if it were bounded, general topology tells us that it would
have an accumulation point in R. This would contradict the fact that the set
has none. ut

A relevant consequence for operationally discrete processes that we will
exploit later, is the following property. It states that for every time T ∈ [0,∞),
there is a first later moment t in time for which δ(c(t)) is defined, if there is
moment for which it is defined at all.

Understanding Computation 49

Lemma 14. Let P = 〈A,E, δ, E0, C〉 be operationally discrete. Let T ∈ [0,∞)
be such that {t > T | δ(c(t)) is defined} is non-empty. Then the set {t > T |
δ(c(t)) is defined} has a minimum element.

Proof. As P is operationally discrete, the set {t > T | δ(c(t)) is defined} cannot
have an accumulation point. This means that its infimum must be an element
of the set, i.e. be its minimum. ut

Without loss of generality, the domains {t | δ(c(t)) is defined} may always
be assumed to be countably infinite (and unbounded), by virtue of the following
observation.

Lemma 15. Let P = 〈A,E, δ, E0, C〉 be operationally discrete. Then there ex-
ists an operationally discrete computational process P ′ = 〈A′, E, δ′, E0, C

′〉 such
that P ≡ P ′ and for every computation c′ ∈ C ′, {t | δ(c′(t)) is defined} is
countably infinite and unbounded.

Proof. Let P be as given. Consider the process P ′ = 〈A × C,E, δ′, E0, C
′〉,

with δ′ such that for every a ∈ A and c ∈ C we have δ′([a, c]) = δ(a), and
C ′ = {c′ | c ∈ C}, where for every c ∈ C, the map c′ : [0,∞)→ A×C is defined
by c′(t) = [c(t), c].

Let dA be the metric on A and dC the discrete metric on C. Then A × C
is a metric space, e.g. under the common 2-product metric. As in the proof of
Lemma 11, one verifies that every map c′ ∈ C ′ is a curve in A × C under this
metric. Hence, P ′ is a computational process, and every computation c′ ∈ C ′ is
a ‘replica’ of c ∈ C within its own slice A × {c} of A × C. In particular, P ′ is
again operationally discrete.

Modify δ′ into a new semantic map δ′′ as follows. If c ∈ C is such that {t |
δ(c(t)) is defined} is infinite, then we leave all values δ′′([a, c]) = δ′([a, c]) = δ(a)
unchanged. If c ∈ C is such that {t | δ(c(t)) is defined} is finite, then we leave
δ′′([a, c]) = δ′([a, c]) = δ(a) unchanged whenever δ(a) is defined, but redefine
δ′′([a, c]) if it is not, as follows.

As {t | δ(c(t)) is defined} is finite (and non-empty), it must have a largest
element, say T (by a similar argument as in Lemma 14). Consequently, the items
c(t) have undefined δ-value for all t > T . Thus, we can safely set δ′′([a, c]) to
be δ(c(T)) for any or all of these items. In particular, define δ′′([c(T + k), c]) =
δ′′([c(T), c]) = δ(c(T)) for all k ∈ N. For all items whose δ′′-value does not get
modified this way, we leave δ′′([a, c]) = δ′([a, c]) = δ(a) undefined.

One easily verifies that the modification of δ′ into δ′′ leaves the consistency
conditions along the curves c′ ∈ C ′ unaffected. Thus P ′′ = 〈A×C,E, δ′′, E0, C

′〉
is again a computational process. Clearly, P ′′ is operationally discrete again also,
and for every c′ ∈ C ′, the set {t | δ(c′(t)) is defined} is now always countably
infinite and unbounded. The equivalence of P and P ′′ is immediate, as Ec = Ec′ ,
for every c ∈ C. ut

Although the action space A × C used in the proof is generally large, it
may be noted that |A×C| = max(|A|, |C|) as soon as one the cardinalities |A|
or |C| is infinite. Under mild conditions on C we can prove Lemma 15 by just
modifying δ, i.e. without needing a different action space.

50 J. van Leeuwen and J. Wiedermann

Example 8. Let P = 〈A,E, δ, E0, C〉 be an operationally discrete computational
process with the property that for every c ∈ C and time T , there is a time t > T
such that c(t) 6∈ {c1(t) | c1 ∈ C and c1 6= c}. Assume that C is countable. Then
there is an operationally discrete computational process P ′ = 〈A,E, δ′, E0, C

′〉
equivalent to P that already satisfies the desired property of Lemma 15. The
(inductive) proof proceeds along similar lines as above.

If P is operationally discrete, then the set {c(t) | δ(c(t)) is defined} is closed
and at most countably infinite too. This follows because it is the image of a
closed and at most countable infinite set, namely {t | δ(c(t)) is defined}, under
a continuous map, namely c. An important fact is the following.

Theorem 10. Let P be observationally discrete, i.e. for every c ∈ C the set
{c(t) | δ(c(t)) is defined} has no accumulation points (in A). Then P is opera-
tionally discrete.

Proof. Let c be an arbitrary computation of P . Suppose {t | δ(c(t)) is defined}
had an accumulation point in R, say T . Then, by continuity of c, c(T) would
be an accumulation point of {c(t) | δ(c(t)) is defined}. This would contradict
the assumption that P is observationally discrete. ut

The properties of observationally discrete processes give us the proper basis
for developing the notion of discrete computation.

8 Continuous vs. discrete computation

We defined computation as a phenomenon that unfolds in continuous time. It is
the mathematical rendition of Turing’s claim that ‘all machinery can be regarded
as continuous’ [42]. However, in many classical conceptions, computation is
considered as a phenomenon that is unfolding in discrete time. Even Turing
qualified his claim by noting that ‘when it is possible to regard [machinery] as
discrete it is usually best to do so’ [42].

The distinction between the ‘continuous’ and the ‘discrete’ view is often seen
as a dichotomy in the field of computation and as an obstacle for developing a
general theory. But, do we really have different notions of computation here? In
this section we will resolve the dichotomy and reconcile the seemingly different
notions that are involved.

The first question to be addressed is, what ‘discrete computation’ is in the
first place. Staying with the epistemic philosophy adhered to in this report, dis-
crete computations must be ‘produced’ by a computational process and generate
‘knowledge’ in some way. However, we can’t just impose a discrete time-scale
(or clock) on a process. A computation should only be called discrete if there
is an observational criterion for doing so.

In this section we develop the epistemic philosophy of computation for the
discrete case. We first define discrete processing as the acting mechanism un-
derlying discrete computation. We will argue that discrete processing systems
can be seen as a generalization of tolerance automata as introduced by Arbib

Understanding Computation 51

in the 1960’s [3]. We then give a plausible criterion for when a discrete pro-
cessing system may be called ‘computational’. In the next section we prove the
fundamental facts that relate computational discrete processing systems and
(observationally discrete) computational processes.

8.1 Discrete processing and computation

We begin by considering what an observer ‘sees’, when he observes something
that we might call a discrete computation. How might the phenomenon be
generated, and how should it be defined so it fits the very large number of
instances in which the notion of discrete computation occurs? It is a question
very much like the one we considered for computation in general.

Following our earlier approach, the observed phenomenon must be produced
by some underlying system of a similar nature as a computational process, ex-
cept that this system manifests itself only at times chosen from some unbounded
discrete subset Obs ⊂ R. The processing takes place in an action space, and
action items can be read out only at times t with t ∈ Obs. Whatever happens
in between the chosen times is assumed to be ’hidden’ or ‘unknown’ to the
observer. In particular, we assume that no observable knowledge is produced
during these in-between intervals.

The underlying processing system can be seen as generating discrete maps
that unfold in an action space U . We distinguish between general, operational
discrete maps and the stronger observational variant.

Definition 34. A discrete map is any mapping v : Obs(v) → U , where the
time domain Obs(v) ≡ {tv0, tv1, · · ·} is some countable, unbounded subset of R
with tv0 = 0 and tv0 < tv1 < · · ·.

Definition 35. A discrete map v : Obs(v) → U is said to be observationally
discrete if, in addition to the properties in Definition 34, we also have that
{v(tv0), v(tv1), · · ·} ⊆ U has no accumulation point (in U).

Discrete maps are defined in a completely general way, but presumably there
is some additional information around that explains how (and why) the discrete
maps can be generated by the underlying system. One may think of Obs(v) as a
clock that ticks precisely at the times that the system produces knowledgeable
information. We only consider unbounded time domains (cf. Lemma 15).

Discrete maps will play the same role in discrete computation as curves do
in the continuous case.

Notation 4 For any discrete map v, we write vi = v(tvi).

Notation 5 For any discrete map v, we write vinit = v0.

Returning to the observer, we may assume then that he observes a sequence
of action items as it is being produced in a step-wise fashion following the course
of some discrete map. The observed information consists, in principle, of the
knowledge items that are distilled from the action items passed on the way,
using a suitable semantic map.

52 J. van Leeuwen and J. Wiedermann

This leads to the following analogue of Definition 5 for the case of discrete
computation.

Definition 36. A discrete processing system is any 5-tuple Q = 〈U,E, δ, E0, V 〉
where U is an action space, E is a knowledge space, δ : U → E is a semantic
map, E0 ⊆ E is a non-empty set of initial knowledge, and V is a collection of
discrete maps v : Obs(v) → U such that the following consistency conditions
are satisfied:

– for every v ∈ V , δ(vinit) ∈ E0, and

– for all time indices i, j with i ≤ j: if δ(vi) and δ(vj) are both defined, then
δ(vi) |=? δ(vj) in E.

Again we assume that the observer has some idea of how (and why) a discrete
system is doing what it does. The given definition is intentionally broad, and
articulates only the bare essence of the generative systems we want to include
and no more. We normally assume that in discrete processing systems, δ is
defined on all action items that are possibly visited by a discrete map.

Whereas the definition is very broad, we may sometimes have to assume
that for all discrete maps v, the times tvi for i = 0, 1, · · · are either known to the
observer or signalled to him ‘at runtime’ through some observable property of
the system (like the ticking of a clock). In this way the actor-spectator paradigm
makes sense also in the discrete case.

In observing discrete maps v, it may well be possible that the observer sees
some kind of convergence in the sequence v0, v1, · · · (with or without an actual
limit). This is not excluded in general but, when it is, the generated map will
be observationally discrete. It may be argued that discrete processing systems
that are truly discrete, only display observationally discrete behaviours (maps),
from an observer’s perspective.

Definition 37. A discrete processing system Q = 〈U,E, δ, E0, V 〉 is said to be
observationally discrete if all maps in V are observationally discrete.

By imposing further constraints, one may limit discrete processing systems
to those systems which have a specific property. In particular, in the next section
we will add some constraints that intend to express when a discrete processing
system may be called computational.

Tolerance systems As in the continuous case, it may be reasonably to impose
a proximity condition on the successive steps in a discrete map. This corresponds
to the credible property of discrete processing systems that in between any two
consecutive observable time moments of a discrete map, only a small number
of changes can be effectuated in the recently visited action item.

One can only speak of proximities in space U if there is a way to define what
it means for action items to be ‘close’. A very similar question can be recognized
in Arbib’s work in the 1960’s [2, 3] when he considered how one might adapt
the continuous behaviour of control systems to a discrete setting. He proposed
to use the notion of tolerances for it, originally due to Zeeman [52] in his work
on proximities in visual perception in the brain.

Understanding Computation 53

Definition 38. A tolerance on U is any binary relation ξ on U that is reflexive
and symmetric.

If ξ is a tolerance on U , then [u1, u2] ∈ ξ is meant to indicate that u1 and
u2 are ‘proximate’ or ‘near’, i.e. it is seen as a ‘tolerable’ jump for a discrete
computation to move from u1 to u2 ‘in one step’ in the action space. If we apply
this to discrete maps and discrete processing systems, we obtain the following
plausible notions.

Definition 39. A discrete map v : Obs(v)→ U is called ξ-continuous if for all
time indices i we have [vi, vi+1] ∈ ξ.

Definition 40. A discrete processing system Q = 〈U,E, δ, E0, V 〉 is called a
tolerance system if there is a tolerance ξ on U such that every v ∈ V is ξ-
continuous.

Tolerance systems attempt to close in on the continuous behaviour of com-
putational processes, without assuming or simulating actual computationality.
Common examples of tolerance systems are the following, where dU denotes the
metric on U :

– Small step systems: for all v ∈ V and indices i, dU (vi, vi+1) ≤ ε, for some
constant ε > 0.

– Lipschitz systems: for all v ∈ V and indices i, dU (vi, vi+1) ≤ κ|tvi − tvi+1|, for
some constant κ > 0.

– Hölder systems: for all v ∈ V and indices i, dU (vi, vi+1) ≤ κ|tvi − tvi+1|1/p,
for some constants κ, p > 0.

Tolerances were used by Arbib [3] in defining tolerance automata, a kind of
control systems generating discrete motions m in an action space X by means
of step-wise transitions. Transitions are determined by the current state and an
input signal, and are assumed to proceed such that every step is bound by the
tolerance ξ specified for the automaton, i.e. such that [m(t),m(t + 1)] ∈ ξ for
every t ∈ N.

We conclude that motions as generated by tolerance automata are closely
related to discrete maps, with N as the set of observable times. Let a tolerance
automaton be called metric if its tolerance space X is metric. One easily shows
the following.

Theorem 11. For every metric tolerance automaton M there exists a tolerance
system Q such that the discrete maps produced by Q are precisely the motions
generated by M .

8.2 Computational discrete processing systems

We have argued that discrete computation is captured, very generally, by the
notion of discrete processing systems. However, this notion merely captures
the phenomenon at the level of the observer, emphasizing that all meaningful

54 J. van Leeuwen and J. Wiedermann

information from the ongoing process is obtained by just observing it during
the times of some unbounded discrete subset of R.

We now consider the question when, and how, the processing can actually
be regarded as a form of computation. It is natural to link this question to our
understanding of computations in general. When can discrete maps be viewed
as the observable effect of computations as we know them?

LetQ = 〈U,E, δ, E0, V 〉 be a discrete processing system, and let v : Obs(v)→
U be one of its discrete maps. Thus, we are observing Q at times tv0(= 0) <
tv1 < · · · and assumed that by means of some ‘background process’ it has a
way of ‘bridging’ the gaps in between the observable moments. We assumed
also, that this process does not produce any observable knowledge in between
the tvi ’s. If Q is to be computational, then this background process has to be a
computational process.

Following this line of reasoning, we can now define what it means for a
system Q to be computational. We first define an auxiliary concept for metric
spaces.

Definition 41. U is said to be embeddable in metric space A if there exists a
bijective isometry h between U and a closed subspace of A.

Definition 42. A discrete processing system Q = 〈U,E, δ, E0, V 〉 is said to be
computational if and only if there is a metric space A and a computational
process P = 〈A,E′, δ′, E0, C〉 such that:

– U is embeddable in A, i.e. there is a bijective isometry h between U and a
closed subspace Uh of A,

– E ⊆ E′ and δ′ � Uh = δ ◦ h−1,

– for every discrete map v : Obs(v) → U of Q, h ◦ v : Obs(v) → Uh is an
observable trace of P , and

– for every observable trace mc : Ic → A of P , mc(Ic) ⊆ Uh and h−1 ◦mc :
Ic → U is a discrete map of Q.

If Q is computational, every process P that satisfies the above constraints is
called a background process for Q.

The first condition in the definition says that U is part of some bigger ac-
tion space A, in which the ‘gaps’ are bridged by process P . We require that
Uh is closed, to ensure that discrete maps of Q do not suddenly get accumu-
lation points (in A) when they are observed in the bigger space. Although we
may not want to exclude this in general, it makes perfect sense to do so for
observationally discrete systems.

The further conditions say that P acts as a background process of Q, bridg-
ing the gaps in between observable time moments and connecting the time steps
of any discrete map of Q computationally. The third and fourth condition say
that the computations of P do precisely this, and that they do not generate
any observable information ‘during’ any of the gaps. (It means that we may as
well assume that E′ = E, as there is no need for having a broader knowledge
space for P .)

Understanding Computation 55

The definition precisely expresses the philosophy that any discrete compu-
tation, or processing system, is the observed ‘image’ of an underlying process
that fills the in-between intervals of the corresponding discrete map. Note in the
definition that P must be operationally discrete, if it is to have the stated prop-
erty. If Q is observationally discrete, then P must be observationally discrete
as well.

It should be noted that not just any operationally discrete computational
process P can serve as a background process for some discrete processing system
Q. We have argued earlier that for all discrete maps v of Q, the times tvi (i =
0, 1, · · ·) should be implicitly or explicitly identifiable for the observer. It thus
makes sense to assume this for the observable traces of P as well, if P is to
serve as a useful background process.

In concrete terms, the latter requirement would mean that the times in all
sets Ic (c ∈ C) would be ‘detectable’ of ‘known’, in some way that is facilitated
in the functioning of P . In this way, each discrete map v of Q appears as
the ‘clocked projection’ of a suitable computation of P , where each map v may
require an own ‘clock’ to achieve it.

We can now finally define ‘what a discrete computation is’, in the general
sense we have aimed at and in perfect analogy to Definition 6.

Definition 43. A discrete computation is any discrete map v for which there
is a discrete processing system Q = 〈U,E, δ, E0, V 〉 that is computational and
has v ∈ V .

Definition 44. A discrete computation v is called observationally discrete if
there is a discrete processing system Q = 〈U,E, δ, E0, V 〉 with v ∈ V that is
both observationally discrete and computational.

Many discrete processing systems are observed using integer-valued or sym-
bolic parameters and are thus of the form Q = 〈Nk, E, δ, E0, V 〉, for some k > 0.
With the Euclidean metric, the space Nk is embeddable in Rk, and the question
whether Q is computational typically reduces to the question whether there is
a computational process P = 〈Rk, E′, δ′, E0, C〉 such that every v ∈ V has a
continualization in C. Here, a continualization of v is any curve cv : [0,∞)→ Rk
such that cv � Obs(v) ≡ v.

Discrete maps v : Obs(v) → Nk have numerous continualizations. Every
curve obtained by connecting vi to vi+1 by a path in Rk for i = 0, 1, · · · results
in a continualization of v, and all continualizations of v are of this form. Thus,
for Q to be computational, one needs a process P that can generate suitable
continualizations in a way that is computationally explainable.

If the discrete maps of Q result from a natural process, then this process
often is a prime candidate for acting as a suitable background process P . If
the maps of Q results from an artificial source like a mathematical machine
model, then it is often sufficient to extend this model by having it produce a
straight-line path in between each vi and subsequent vi+1 that it generates. In
this case, the computations in P will all be piecewise linear.

Technically, a background process may need to ‘know’ vi+1 in order to com-
pute the continualization from vi to vi+1. This may be done in several ways,

56 J. van Leeuwen and J. Wiedermann

for instance by using the mechanism of the discrete map at ‘double speed’ to
compute a shadow representation of vi+1 in the background by time 1

2(ti+ ti+1)
while the curve cv goes straight in some direction, and re-directing the straight-
line towards the concrete vi+1 from then on until this item is concretely reached
at time ti+1. Note that cv remains piecewise linear. We assume that continu-
alizations can be subsumed in background processes as needed and use them
routinely in this report.

Discrete processing systems with U = Nk are only a special case of all dis-
crete systems we consider. In Section 9 we will see how the given definitions
enable us to explain how discrete processing systems relate to suitable compu-
tational processes in detail.

We conclude with a general observation. Let A,B be metric spaces, with
B a subspace of A. We call B path-connected in A, if for every pair of points
(b1, b2) with b1, b2 ∈ B there is a path in A connecting b1 and b2.

Theorem 12. Let Q = 〈U,E, δ, E0, V 〉 be a computational discrete processing
system, and let P = 〈A,E′, δ′, E0, C〉 be a background process for Q (as in
Definition 42). Suppose that for every two items u1, u2 ∈ U there are a discrete
map v ∈ V and time indexes i, j ≥ 0 such that vi = u1 and vj = u2. Then Uh
is path-connected in A.

Proof. Consider any two points of Uh. By bijectivity of h, there are items
u1, u2 ∈ U such that the two points equal h(u1) and h(u2), respectively. By
the assumption, there must be a discrete map v ∈ V and times tvi , t

v
j such that

v(tvi) = u1 and v(tvj) = u2. By computationality of Q, there must be an observ-
able trace mc of P with the property that mc(t

v
i) = h(u1) and mc(t

v
j) = h(u2).

The curve segment of computation c ∈ C between moments tvi and tvi establishes
a path between h(u1) and h(u2). As the points of Uh were chosen arbitrarily, it
follows that Uh is path-connected in A. ut

Theorem 12 provides a necessary condition for a discrete processing system
Q to be computational: its action space U must be embeddable in a metric space
in which it is path-connected.

9 Discrete computation

We now explore discrete computation more precisely. What are the conse-
quences of the definition of computationality for discrete processing systems?
Can one say more than what is expressed in the definition, about the rela-
tionship between discrete and continuous computation? Have we obtained a
framework that proves the hypothesis from Section 2.2, that discrete process-
ing systems can be viewed as ‘projections’ of general (continuous) processes?

In this section we define the notions of projection, faithful projection, and
also of codability for discrete computation. We then prove that discrete process-
ing systems are computational if and only if they are the (faithful) projection of
an operationally discrete computational process. We also prove a stronger result
for the case of observationally discrete processing systems. We then argue that,

Understanding Computation 57

under suitable extra conditions, effectively codable discrete processing systems
always qualify for being computational.

The results show how discrete computation can effectively be viewed as an
instance of general, continuous computation. They also show that, mathemati-
cally speaking, Turing’s claim that ‘all machinery can be regarded as continuous’
[42] does not need to make an exception for discrete computation.

We conclude the section with a number of examples that show the applica-
bility of the results, including the important cases of classical state-based models
of computation (like Turing machines) and internet searching.

9.1 Projections

Let Q = 〈U,E, δ, E0, V 〉 be a discrete processing system. We have argued that
Q is computational if there is a computational process P such that the discrete
maps of Q and the observable traces of P correspond and the same knowledge
is accumulated along the corresponding computations. This is already a strong
relationship, but we expect more from a ‘projection’.

Referring to Definition 42, we focus on the mapping of observable traces
mc : Ic → A of P onto discrete maps h−1 ◦mc : Ic → U of Q. If an observer
is keeping track of a computation c as if it were a computation of Q, he is
essentially observing the mapping c : [0,∞)→ A. He knows that c(t) ∈ Uh for
t ∈ Ic (by definition), and it would clearly be desirable to have the converse as
well. If the converse property holds, we call Q the projection of P .

Definition 45. A discrete processing system Q = 〈U,E, δ, E0, V 〉 is said to
be the projection of a computational process P = 〈A,E′, δ′, E0, C〉 if A and
P satisfy the conditions of Definition 42 and for every computation c of P ,
c(t) ∈ Uh if and only if t ∈ Ic.

The extra condition implies that, when we observe a computation c of P ,
then we can effectively restrict c to its points in space Uh and project those with
h−1 onto U to obtain the corresponding discrete map of Q. In other words, if
the observer has some criterion for recognizing action items from Uh (or of U if
h is known), the condition enables him to know whether the computation he is
observing has reached an observable time of the discrete map - short of testing
whether δ′ is defined in the item.

Recall that observationally discrete processing systems were the most ideal
type of discrete systems, from an observer’s perspective. The following theo-
rem shows that all observationally discrete processing systems that are com-
putational can be seen as projections of observationally discrete computational
processes. It is a very important case of a more general result we prove in this
section. The technique to achieve it, is to let every computation of the ‘back-
ground process’ run in an own private segment of the action space, making itself
present in U only when it is ‘time to be observable’ (and only then).

Theorem 13. An observationally discrete processing system is computational
if and only if it is the projection of an observationally discrete computational
process.

58 J. van Leeuwen and J. Wiedermann

Proof. The if-part is immediate, as the definition of projection is a refinement
of the definition of computationality. The observational discreteness of the com-
putational process in the definition automatically implies that the discrete pro-
cessing system involved is observationally discrete as well.

For the only-if part, let Q = 〈U,E, δ, E0, V 〉 be a discrete processing system
and assume that it is observationally discrete and computational. Let A and
P be as per Definition 42. By implication, P must be observationally discrete.
We show that A and P can be modified such that the required condition of
Definition 45 is satisfied as well.

For any v ∈ V , let Av be a copy of A and hv : U → Av (a copy of) the
bijective isometry as implied by Definition 42. Let A′ be the space obtained by
taking the direct sum of U and all spaces Av. For all v ∈ V and i ∈ N, identify
item hv(vi) of Av with item vi of U . Note that this automatically identifies
items hv(vi) and hw(wi) as well, provided vi = wi in U .

Formally, the identifications define an equivalence ≡ on A′ and make A′

a quotient space. By general topology, A′ is a pseudometric space, but in our
case a stronger fact can be shown. Here we use that the maps v of Q are all
observationally discrete, and that for all v ∈ V , hv(U) is closed in Av.

Claim. A′ is a metric space.

Proof. Let dU and dA denote the metrics on the spaces U and Av, respectively.
Define the distance function d(x, y) on A′ as follows:

– for any x ∈ A′,
· d(x, x) = 0.

– if x, y ∈ U , then
· d(x, y) = dU (x, y).

– if x ∈ U and y ∈ Av, then
· d(x, y) = inf{dU (x, vi) + dU (vi, vj) + dA(hv(vj), y) | i, j ≥ 0}.

– if x ∈ Av and y ∈ U , then
· d(x, y) = d(y, x).

– if x ∈ Av and y ∈ Av then
· d(x, y) = dA(x, y)

– if x ∈ Av and y ∈ Aw and v 6= w then
· d(x, y) = inf{dA(x, hv(vi)) + dU (vi, wj) + dA(hw(wj), y) | i, j ≥ 0}.

The definition in case x ∈ U and y ∈ Av, could be simplified to d(x, y) =
inf{dU (x, vi) + dA(hv(vi), y) | i ≥ 0} but we leave it in the given form for
symmetry reasons. We now verify that d(x, y) is a metric on A′.

(I) For all x, y ∈ A′, d(x, y) = 0 if and only if x ≡ y. The if-part holds by
definition. For the only-if part we proceed by case analysis. as follows.

– if x, y ∈ U , then d(x, y) = dU (x, y) = 0 implies that x = y and thus x ≡ y,
as dU is a metric.

– if x ∈ U and y ∈ Av, then d(x, y) = 0 implies that inf{dU (x, vi)+dU (vi, vj)+
dA(hv(vj), y) | i, j ≥ 0} = 0 and hence that inf{dU (x, vi) | i ≥ 0} = 0 and
inf{dA(hv(vj), y) | j ≥ 0} = 0 as well. As {v0, v1, · · ·} and {hv(v0), hv(v1) · · ·}
have no accumulation points in U and Av respectively (in the latter case
because the set has no accumulation point in hv(U) and hv(U) is a closed

Understanding Computation 59

subset of Av), the only way the infima can be 0 is when x = vi and y = hv(vj)
for some i, j ∈ N. But d(x, y) = 0 then implies that dU (vi, vj) = 0 and thus
that vi = vj . It follows that x ≡ y.

– if x ∈ Av and y ∈ U , then d(x, y) = d(y, x) = 0 implies that x ≡ y as well,
by the preceding case.

– if x ∈ Av and y ∈ Av, then d(x, y) = dA(x, y) = 0 implies that x = y and
thus x ≡ y, as dA is a metric.

– if x ∈ Av and y ∈ Aw and v 6= w, then d(x, y) = 0 implies that necessarily
x = hv(vi) and y = hw(wj) for some i, j ≥ 0, by a very same argument
as above. But then d(x, y) = 0 implies that dU (vi, wj) = 0 and hence that
vi = wj . It follows that x ≡ y.

(II) For all x, y ∈ A′, d(x, y) = d(y, x). This follows from the symmetries in
the definition.

(III) For all x, y, z ∈ A′, d(x, z) ≤ d(x, y) + d(y, z). This follows by case
analysis again. In stead of going through all possible cases, we only show it for
the most general situation in which x ∈ Au, y ∈ Av and z ∈ Aw with u, v, w all
distinct. We now note the following chain of inequalities, for all i, j and k::

– By the fact that hv is an isometry and the triangle inequality for dA we
have:
dU (vj , vk) = dA(hv(vj), h

v(vk)) ≤ dA(hv(vj), y) + dA(y, hv(vk)).
– By the triangle inequality of dU we have:
dU (ui, wl) ≤ dU (ui, vj) + dU (vj , vk) + dU (vk, wl).

– By combining the previous inequalities, we obtain:
dA(x, hu(ui)) + dU (ui, wl) + dA(hw(wl), z) ≤
(dA(x, hu(ui)) + dU (ui, vj) + dA(hv(vj), y)) + (dA(y, hv(vk)) + dU (vk, wl) +
dA(hw(wl), z)).

By taking infima on the right and the left, we obtain that d(x, z) ≤ d(x, y) +
d(y, z). ut

We conclude that A′ is a proper action space. Also, we see that U is trivially
embeddable in A′, by taking the identity mapping of U onto its copy U in the
direct sum.

Claim. U is closed in A′.
Proof. Let x be an accumulation point of U and suppose that x 6∈ U , i.e. in
A′. Then for some v ∈ V , x ∈ Av and there is a sequence of points x0, x1, · · ·
in U such that inf{dU (xi, vj) + dA(hv(vj), x) | i, j ≥ 0} = 0. This means that
necessarily inf{dA(hv(vj), x) | j ≥ 0} = 0, and thus two cases can arise:

(i) there is a j such that x = hv(vj), or
(ii) x is an accumulation point of {hv(v0), hv(v1), · · ·} in Av.

In case (i) it follows that x ≡ vj , contradicting that x 6∈ U (in the quo-
tient space). In case (ii) it would follow that x ∈ Uhv , by the fact that Uhv
is closed in Av. However, as {v0, v1, · · ·} has no accumulation point in U ,
{hv(v0), hv(v1), · · ·} cannot have an accumulation point in Uhv (within Av).
Thus, this case cannot happen either. We conclude that a contradiction occurs

60 J. van Leeuwen and J. Wiedermann

in all cases, and that U must contain all its accumulation points in A′. Hence
U is closed in A′. ut

Finally, define P ′ = 〈A′, E′, δ′′, E0, C
′〉 to be the process with δ′′ and C ′

defined as follows:

– for x ∈ U and y ∈ Av: δ′′(x) = δ(x) and δ′′(y) = δ(y).
– for any c ∈ C, let c′ be the curve hv ◦ c in Av with v the discrete map of
Q that corresponds to its observable trace, i.e. such that v = h−1 ◦mc (cf.
Definition 42). In other words: c is the curve that ‘connects the gaps’ in map
v as a computation. Let C ′ = {c′ | c ∈ C}.

It is straightforward to see that P ′ is a computational process, and that A′ and
P ′ inherit all the properties of A and P required to satisfy Definition 42 for
making Q computational. However, we obtain more.

Claim. Q is the projection of P ′.
Proof. Consider any computation c′ ∈ C ′. Let c′ = hv ◦ c be the incarnation
of a computation c ∈ C, now running fully in the subspace Av ⊆ A′. By
construction, c′ hits subspace U = Uh of A′ only in the items hv(vi) (i ≥ 0),
these precisely being the items which were identified with items in U . Hence, an
item visited by c′ is in Uh if and only if it is visited in its observable trace. ut

This proves the theorem. ut

In the given proof, process P ′ realizes every computation of P by delegating
it to an own subspace. If P is a meaningful computational process, which we
assume, then it may well be argued that P ′ is as well.

Before we continue, we prove the following analogue to Theorem 12. Let
A,B be metric spaces, with B a subspace of A. We call B externally path-
connected in A, if for every pair of points (b1, b2) with b1, b2 ∈ B there is a path
in A connecting b1 and b2 such that the part between b1 and b2 runs entirely
in A \B. (In other words: the path ‘hits’ B only in the points b1 and b2 and in
no other points of B.) Similar to Theorem 12 one can show:

Theorem 14. Let Q = 〈U,E, δ, E0, V 〉 be a discrete processing system, and
let Q be the projection of a computational process P = 〈A,E′, δ′, E0, C〉 (as in
Definition 45). Suppose that for every two items u1, u2 ∈ U there are a discrete
map v ∈ V and time indexes i, j ≥ 0 such that vi = u1 and vj = u2. Then Uh
is externally path-connected in A.

Recall that Theorem 12 gave a (necessary) condition for a discrete process-
ing system to be computational. By Theorem 14 we can now strengthen this
condition, at least for discrete processing systems that are observationally dis-
crete, to the requirement that their action space must be embeddable in a metric
space in which it is externally path-connected. (In the next section we will see
that this holds for all discrete processing systems that are computational.)

9.2 Faithful computations

The construction in Theorem 13 very much depended on the fact that Q was
assumed to be observationally discrete. However, what can be said about com-
putational discrete processing systems in general? To answer this question, we

Understanding Computation 61

reconsider the requirements as we distinguished them for projections, refine
them and strengthen Theorem 13 considerably.

Let Q = 〈U,E, δ, E0, V 〉 be a discrete computational system, let it be com-
putational, and let P = 〈A,E′, δ, E0, C〉 be a ‘background process’ that realizes
the discrete maps of Q. Necessarily, P is operationally discrete. Referring to
Definition 42 for notations, consider any observable trace mc : Ic → A of P ,
where Ic = {t | δ(c(t)) defined}. Let Ic = {tc0, tc1, · · ·} with 0 = tc0 < tc1 < · · ·.

Notation 6 For any computation c of P , we write ci = c(tci).

If the observer is keeping track of c as if it were the computation of a discrete
map of Q, he observes c at the times tci (i ≥ 0). By computationality, we know
that ci ∈ Uh for i ≥ 0 (by definition 42). In Section 9.1 we argued that it would
be desirable for the observer to have c(t) ∈ Uh if and only if t ∈ Ic. This led us
to Theorem 13.

In order to generalize Theorem 13 to all systems, we need to look at the
notion of projection again and strengthen it. In fact, in addition to what we
required for ordinary projections, we now also impose that during all inter-
vals (tci , t

c
i+1) (the ‘gaps’ in between the observations) the observed process is

uniquely ‘owned’ by the interval in which it operates. Thus, observing c, it never
happens that we see an action item during some interval (tci , t

c
i+1) that also oc-

curs during some other interval (tcj , t
c
j+1) (i 6= j). It means that the observer is

never confused about the gap period he is observing.

Definition 46. A computation c of background process P is said to be faithful
if the following properties hold:

– for all i ≥ 0, c(t) ∈ Uh if and only if t ∈ Ic, and
– for all i, j ≥ 0 with i 6= j, the segments {c(t) | tci ≤ t ≤ tci+1} and {c(t) |
tcj < t < tcj+1} are disjoint,

The remainder of this subsection is devoted to the notion of faithfulness
as it is now defined. Note that faithfulness is a property of the computations
of P , the background process to-be of Q, and not of Q itself. The following
observation can be made. The proof is similar to that of Theorem 13, but now
the construction avoids the assumption of observational discreteness.

Lemma 16. All computations of P can be assumed to be faithful.

Proof. Suppose not all computations of P were faithful. We show how to modify
P into a new process P ′′, that satisfies the constraints of P and does have the
desired property.

By assumption, every computation c of P corresponds to a discrete map of
Q, and thus maps its observable times, i.e. the elements of Ic, into the subspace
Uh ⊆ A. Now proceed as follows.

For any c ∈ C and j ∈ N, let Acj be a copy of A and hcj : Uh → Acj (a copy of)
the trivial identification of Uh in A, i.e. of the bijective isometric image of U in
A. Let A′′ be the space obtained by taking the direct sum of Uh and all spaces
Acj . For all c ∈ C and j ∈ N, identify the items hcj(cj) and hcj(cj+1) of Acj with

62 J. van Leeuwen and J. Wiedermann

the items cj and cj+1 of Uh, respectively. Note that this automatically identifies,
for example, the items hcj(cj) and hek(ek+1) as well, provided cj = ek+1 in Uh.
Every Acj is thus ‘pinned’ to (at most) two items in Uh.

Formally, the identifications define an equivalence ≡′′ on A′′, turning A′′

into a quotient space. Once again A′′ is a pseudometric space, but we will show
that it is metric in our case.

Claim. A′′ is a metric space.

Proof. Let dU and dA denote the metrics on the spaces Uh and Acj , respectively.
(Here dU is the metric of U ‘after taking the bijective isometry h’ and thus the
restriction of dA to Uh. The metric on Acj is likewise a ‘copy’ of the metric on
A.) Define the ‘implied’ distance function d(x, y) on A′′ as follows:

– for any x ∈ A′′,
· d(x, x) = 0.

– if x, y ∈ Uh, then
· d(x, y) = dU (x, y).

– if x ∈ Uh and y ∈ Acj , then
· d(x, y) = min{dU (x, cj) + dA(hvj (cj), y), dU (x, cj+1) + dA(hvj (cj+1), y)}.

– if x ∈ Acj and y ∈ Uh, then
· d(x, y) = d(y, x).

– if x ∈ Acj and y ∈ Acj then
· d(x, y) = dA(x, y)

– if x ∈ Acj and y ∈ Aek and c, j 6= e, k then
· d(x, y) = min{dA(x, hvj (cj)) + dU (cj , ek) + dA(hek(ek), y),

dA(x, hvj (cj)) + dU (cj , ek+1) + dA(hek(ek+1), y),
dA(x, hvj (cj+1)) + dU (cj+1, ek) + dA(hek(ek), y),
dA(x, hvj (cj+1)) + dU (cj+1, ek+1) + dA(hek(ek+1), y)}.

One easily verifies that d(x, y) is a metric on A′′. Symmetry and the triangle
inequality are satisfied because d(x, y) is the implied pseudometric on A′′, and
thus we only need to show the ‘identity of indiscernibles’:

– For all x, y ∈ A′′, d(x, y) = 0 if and only if x ≡′′ y.

However, this trivially holds also. The if-part holds by checking the definitions.
For the only-if part one only needs to check the different cases, as follows.

– if x, y ∈ Uh, then d(x, y) = dU (x, y) = 0 implies that x = y and thus x ≡′′ y,
as dU is a metric.

– if x ∈ Uh and y ∈ Acj , then d(x, y) = 0 implies that min{dU (x, cj) +
dA(hcj(cj), y)} = 0 and hence that dU (x, cj) = 0 and dA(hcj(cj), y) = 0.
It follows that x = cj and hcj(cj) = y, and hence that x ≡′′ y.

– if x ∈ Acj and y ∈ Uh, then d(x, y) = d(y, x) = 0 implies that x ≡′′ y as well,
by the preceding case.

– if x ∈ Acj and y ∈ Acj , then d(x, y) = dA(x, y) = 0 implies that x = y and
thus x ≡′′ y, as dA is a metric.

– if x ∈ Acj and y ∈ Aek and c, j 6= e, k, then d(x, y) = 0 implies that necessarily
(at least) one of the four expressions in the minimization equals 0, say

Understanding Computation 63

dA(x, hvj (cj+1))+dU (cj+1, ek)+dA(hek(ek), y) = 0. Then we necessarily have
dA(x, hvj (cj+1)) = dU (cj+1, ek) = dA(hek(ek), y) = 0 and thus x = hvj (cj+1),
cj+1 = ek and hek(ek) = y. We conclude that x ≡′′ y. The other cases follow
similarly. ut

We conclude that A′′ is a proper action space. Also, we see that U is trivially
embeddable in A′′, by simply taking h to map U onto its copy Uh in the direct
sum.

Claim. Uh is closed in A′′.
Proof. Let x be an accumulation point of Uh and suppose that x 6∈ Uh, i.e. in
A′′. Then for some c ∈ V and j ≥ 0, x ∈ Acj and there is a sequence of points
x0, x1, · · · in Uh such that infi d(xi, x) = 0, i.e.

infi min{dU (xi, cj) + dA(hcj(cj), x), dU (xi, cj+1) + dA(hcj(cj+1), x)} = 0

For the ‘constants’ dA(hcj(cj), x) and dA(hcj(cj+1), x) this means that either
dA(hcj(cj), x) = 0 or dA(hcj(cj+1), x) = 0, or both. Hence, x = hcj(cj) or x =
hcj(cj+1), or both and cj = cj+1. It follows that x ≡′′ cj or x ≡′′ cj=1 (or both,
if cj = cj+1). But, this contradicts that x 6∈ U , i.e. in the quotient space. ut

Finally, define P ′′ = 〈A′′, E′, δ′′, E0, C
′′〉 to be the process with δ′′ and C ′

defined as follows (with the obvious identifications):

– for x ∈ Uh and y ∈ Acj : δ′′(x) = δ ◦ h−1(x) and δ′′(y) = δ(y).
– for any c ∈ C, let c′′ be the curve in

⋃
j A

c
j ⊆ A′′ defined by: for any j ∈ N

and t ∈ [tcj , t
c
j+1], c

′′(t) = hvj (c(t)). As all c in C have observable traces
across [0,∞), every c′′ is well-defined. Note that c′′ is a curve, and that
it ‘connects the gaps’ in the observable trace mc as a computation. Let
C ′′ = {c′′ | c ∈ C}.

It is straightforward to see that P ′′ is a computational process, and that A′′

and P ′′ inherit all the properties of A and P required to satisfy Definition 42
for making Q computational. However, we obtain more.

Claim. Every computation c′′ ∈ C ′′ is faithful.
Proof. We verify Definition 46. By the definition of c′′, if t = tcj for some j ≥ 0
(i.e. t ∈ Ic), then c′′(t) = hcj(c(t

c
j)) ∈ Uh (in A′′). The converse holds as well,

as c′′ : [0,∞) →
⋃
j A

c
j and every Acj ‘hits’ Uh in the points cj = c(tcj) and

cj+1 = c(tcj+1) only. For the second condition in Definition 46, consider any
i, j ≥ 0 with i 6= j. By the definition of c′′ we have {c(t) | tci ≤ t ≤ tci+1} ⊆ Aci
and {c(t) | tcj ≤ t ≤ tcj+1} ⊆ Acj . The subspaces Aci and Acj are disjoint except,
possible for an incidence in the (observable) endpoints of the segments. Thus
the condition holds. ut

We conclude that P ′′ satisfies all the requirements for being a valid back-
ground process and moreover, that P ′′ is faithful. ut

In the given proof, P ′′ simply realizes every computation of P but now,
after an observational moment of a computation has passed, it delegates the
next part of the computation to an own subspace, until the next observational
moment is reached. If P is a meaningful computational process, then we may
consider P ′′ to be as well. This leads to the following, general result.

64 J. van Leeuwen and J. Wiedermann

Theorem 15. A discrete processing system is computational if and only if it
is the projection of an operationally discrete computational process.

Proof. The if-part is immediate again, as the definition of (faithful) projection
implies computationality. The operational discreteness of the computational
process is a necessary condition in order to obtain a valid discrete processing
system.

Conversely, let Q = 〈U,E, δ, E0, V 〉 be a discrete processing system and
assume it is computational, with background process P as in Definition 42. If
all computations of P satisfy the condition in Definition 45, we are done. If not,
then modify P into a new computational process P ′′ as in Lemma 16. By the
Lemma, P ′′ is a background process for Q, now with the property that all its
computations are faithful. In particular, the requirements of Definition 42 are
satisfied. The result follows. ut

In Lemma 16, we obtained a stronger property for process P ′′ than we actu-
ally needed for Theorem 15. Consequently, a stronger property can be claimed
for the projections we constructed.

Definition 47. A discrete processing system Q = 〈U,E, δ, E0, V 〉 is said to be
the faithful projection of a computational process P = 〈A,E′, δ′, E0, C〉 if A and
P satisfy the conditions as specified in Definition 42 and every computation c
of P is faithful.

Theorem 16. A discrete processing system is computational if and only if it
is the faithful projection of an operationally discrete computational process.

One may also notice that the construction in Lemma 16 preserves the property
of observational discreteness: if P is observational discrete, then so is the new
process P ′′ (as it has the same observational traces). Thus, we can strengthen
Theorem 13 as follows:

Corollary 4. An observationally discrete processing system is computational
if and only if it is the faithful projection of an observationally discrete compu-
tational process.

One may notice that the construction in Lemma 16 did not really need of
process P = 〈A,E′, δ′, E0, C〉 that Uh was closed in A, even though Uh proved
to be closed in the action space A′′ of process P ′′. Thus, if one is willing to
expend the complexity of constructing P ′′ from P , one does not need to require
closedness of the subspace in the definition of embeddability (Definition 41, in
order to obtain our results for discrete processing systems. However, the current
definitional set-up seems to be the most natural one.

Finally, note that Theorems 15 and 16 imply that the necessary condition
for computationality of discrete processing systems proved in Theorem 14 holds
for all discrete systems, not just for the ones that are observationally discrete.
In fact, by Theorem 16, one can strengthen Theorem 14 as follows.

Let A,B be metric spaces, with B a subspace of A. We call B strongly exter-
nally path-connected in A, if for any finite set of pairs {(b1,1, b1,2), · · · , (bk,1, bk,2)}

Understanding Computation 65

with bi,1, bi,1 ∈ B (1 ≤ i ≤ k) the following holds: for any pair (bi,1, bi,2) in the
set there is a path γi in A connecting bi,1 and bi,2 such that the part of γi in
between bi,1 and bi,2 runs entirely in A \ B, and for any i, j with i 6= j the
paths γi and γj do not intersect except possibly in an endpoint. By a similar
argument as before one can show:

Theorem 17. Let Q = 〈U,E, δ, E0, V 〉 be a discrete processing system, and let
Q be the faithful projection of a computational process P = 〈A,E′, δ′, E0, C〉 (as
in Definition 47). Suppose that for every finite collection of pairs {(u1,1, u1,2), · · · ,
(uk,1, uk,2)} with items ui,1, ui,2 ∈ U (1 ≤ i ≤ k), there are a discrete map
v ∈ V and distinct time indices j1,1, j1,2 · · · , jk,1, jk,2 such that vi,1 = uji,1 and
vi,1 = uji,2 (1 ≤ i ≤ k). Then Uh is strongly externally path-connected in A.

By Theorem 16, Theorem 17 is applicable to all discrete processing systems.

9.3 Codable processing systems

So far we studied discrete processing systems in very general terms, allow-
ing them to act in arbitrary metric spaces. The discrete computations they
could generate proved to be exactly equal to ‘clocked observations’ of contin-
uous computations as generated by a suitable computational process. It is the
foundational answer to Turing’s 1948 claim that ‘all machinery can be regarded
as continuous’. Before we get into some examples, we consider the question
whether the theory can be made more tangible.

In practice, many computational processes are observed by tracking and/or
graphing some finite number of numeric parameters in discrete or continuous
time. Even in symbolic computation, the parameters may often be viewed as
being numeric. (We ignore issues of conversion and simply assume Euclidean
distance between parameter tuples.) In the discrete case, this leads to discrete
processing systems whose action space is embeddable in a metric space Rk, for
some k > 0.

Definition 48. A discrete processing system Q is said to be k-codable, for
some k > 0, if Q is computational and admits a background process P which
has action space Rk. A discrete processing system Q is said to codable if it is
k-codable for some k > 0.

The systems we considered in Subsections 4.1 (Finite-state systems) and 4.3
(Reasoning) are seen to be examples of 1-codable processing systems. We note
that, technically, the fact that Rk ≡ R could be used to argue that every k-
parameter system is 1-codable, provided the metric on Rk is chosen to fit the
equivalence. As this usually does not give a very natural metric, we do not
consider this to be standard.

Consider a k-codable processing system Q. By definition we know that Q
admits a background process P with action space Rk. From the results proved
earlier in this section, we know that Q must be the projection of a variant P ′ of
P and the faithful projection of a ‘more refined’ variant P ′′ of P . It is intuitive
that P ′ is operationally more detailed than P , and that P ′′ will be even more
so. We make this concrete in the theorems below.

66 J. van Leeuwen and J. Wiedermann

As we noted, the systems we presented in Subsections 4.1 (Finite-state sys-
tems) and 4.3 (Reasoning) are instances of 1-codable processing systems. In the
case of finite-state machines M , we proved that the corresponding processing
system was the projection of a computational process with action space R2 and
the faithful projection of a process with action space R3. We now show that
these observations are no coincidence, by proving that both are instances of
more general facts.

Theorem 18. Let Q = 〈U,E, δ, E0, V 〉 be a k-codable discrete processing sys-
tem, for some k > 0. Then Q is the projection of a computational process
P ′ = 〈Rk+1, E′, δ′, E0, C

′〉.

Proof. The argument basically follows that of Theorem 13 but we can do with
a simplified form of it. Let Q be as given, and let P = 〈Rk, E′, δ′′, E0, C〉 be
a background process for Q, necessarily satisfying Definition 42. Let h be the
bijective isometry between U and a closed subspace Uh of Rk.

We now create a new background process P ′ = 〈Rk+1, E′, δ′, E0, C
′〉 for Q as

follows. First, we embed Rk into the space Rk+1 by adding a coordinate, i.e. by
the map ρ : Rk → Rk+1 defined by ρ(〈x〉) = 〈x, 0〉. We see that ρ◦h is a bijective
isometry between U and the set Uρ◦h = ρ(Uh) = 〈Uh, 0〉 ⊆ 〈Rk, 0〉 ⊂ Rk+1, that
〈Uh, 0〉 is closed in 〈Rk, 0〉 and thus, by general topology, that this set is also
closed in Rk+1.

Subsequently, define δ′ : Rk+1 → E′ such that the interpretation of action
items using δ is preserved:

δ′(〈x, y〉) =

if y = 0 then: δ′′(〈x〉)

if y 6= 0 then: undefined

Finally we modify the computations of P . Let c ∈ C be a computation of
P , let mc : Ic → Rk be its observable trace, and let Ic = {tc0, tc1, · · ·} with
0 = tc0 < tc1 < · · · (by operational discreteness). As before we write ci = c(tci).
Now define c′ : [0,∞)→ Rk+1 as follows:

c′(t) =

if tci ≤ t ≤

tci+t
c
i+1

2 then: 〈c(t), 2 · t−tci
tci+1−tci

〉

if
tci+t

c
i+1

2 ≤ t ≤ tci+1 then: 〈c(t), 2 · t
c
i+1−t
tci+1−tci

〉

Note that c′ is continuous and behaves like c, but now with a piecewise linear
component added. Let C ′ = {c′ | c ∈ C}.

As we assumed that the times tci are implicitly or explicitly known or planned
for P , process P ′ = 〈Rk+1, E′, δ′, E0, C

′〉 is a valid computational process again.
In fact, as the observational traces of c and c′ are effectively the same (up to an
extra zero coordinate) for any c ∈ C, it follows that P ′ is a valid background
process for Q again. Moreover, for any c′ ∈ C ′ we have that c′(t) ∈ Uρ◦h =
〈Uh, 0〉 ⊆ 〈Rk, 0〉 if and only if the last coordinate of c′(t) is 0, i.e. when t = tci
and thus t ∈ Ic = Ic′ . Hence Q is a projection of P ′. ut

Understanding Computation 67

Let a computation c : [0,∞)→ Rk be called monotone if for any times t1, t2
with t1 < t2 we have c(t1) ≺ c(t2), where ≺ is the common, coordinate-wise
partial order on Rk.

Corollary 5. Let Q = 〈U,E, δ, E0, V 〉 be a k-codable discrete processing sys-
tem, let P = 〈Rk, E′, δ′′, E0, C〉 be a background process for Q, and assume that
all computations in C are monotone. Then Q is the faithful projection of a
computational process P ′ = 〈Rk+1, E′, δ′, E0, C

′〉.

Proof. Construct process P ′ as above. It is easily noted that for every c ∈ C,
if c is monotone, then c′ is faithful. It follows that Q is a faithful projection of
process P ′. ut

Notice in the corollary that, in order for the computations in P to be monotone,
all discrete maps of Q must be monotone as well (with the obvious definition
of the latter). Example 4.3 (Reasoning) may be seen as a concrete instance of
Corollary 5.

In order to obtain faithful projections in general, we extend the construction
in the proof of Theorem 18.

Theorem 19. Let Q = 〈U,E, δ, E0, V 〉 be a k-codable discrete processing sys-
tem, for some k > 0. Then Q is the faithful projection of a computational
process P ′ = 〈Rk+2, E′, δ′, E0, C〉.

Proof. The argument now parallels that of Lemma 16, in a simplified form.
Let Q be as given, and let P = 〈Rk, E′, δ′′, E0, C〉 be a background process for
Q that satisfies Definition 42. Let h be the bijective isometry that must exist
between action space U and a closed subspace Uh of Rk.

We now create a new background process P ′ = 〈Rk+2, E′, δ′, E0, C
′〉 for Q

as follows. First, we embed Rk into the space Rk+2 by adding two coordinates,
i.e. by the map χ : Rk → Rk+2 defined by ρ(〈x〉) = 〈x, 0, 0〉. As before, it
follows that χ◦h is a bijective isometry between U and the set Uχ◦h = χ(Uh) =
〈Uh, 0, 0〉 ⊆ 〈Rk, 0, 0〉 ⊂ Rk+2, that 〈Uh, 0, 0〉 is closed in 〈Rk, 0, 0〉 and, by
general topology, that it is thus closed in Rk+2.

Next, we define δ′ : Rk+2 → E′ such that the interpretation of action items
using δ is preserved:

δ′(〈x, y, z〉) =

if y = 0 and z = 0 then: δ′′(〈x〉)

if y 6= 0 or z 6= 0 then: undefined

Finally, we modify the computations of P as follows. Let c be a computation
of P , let mc : Ic → Rk be its observable trace, and let Ic = {tc0, tc1, · · ·} with
0 = tc0 < tc1 < · · · (by operational discreteness of P). Write ci = c(tci) as before.
Define c′ : [0,∞)→ Rk+2 as follows:

c′(t) =

if tci ≤ t ≤

tci+t
c
i+1

2 then: 〈c(t), 2 · t−tci
tci+1−tci

, 2 · tci+1 ·
t−tci

tci+1−tci
〉

if
tci+t

c
i+1

2 ≤ t ≤ tci+1 then: 〈c(t), 2 · t
c
i+1−t
tci+1−tci

, 2 · tci+1 ·
tci+1−t
tci+1−tci

〉

68 J. van Leeuwen and J. Wiedermann

Note that c′ is continuous and behaves ‘largely’ like c, now with two piecewise
linear components added. Notice in the (k + 2)-nd component of c′(t) that for
all i ≥ 0, tci+1 6= 0. Let C ′ = {c′ | c ∈ C}.

As before, one may argue that P ′ = 〈Rk+2, E′, δ′, E0, C
′〉 is a valid compu-

tational process. In fact, as the observational traces of c and c′ are effectively
the same (except for the added zero coordinates), for any c ∈ C, it follows that
P ′ is a valid background process for Q again.

Claim. Every computation c′ ∈ C ′ is faithful.

Proof. First of all, for any c′ ∈ C ′ we have that c′(t) ∈ Uχ◦h〈Uh, 0, 0〉 ⊆ 〈Rk, 0, 0〉
if and only if the last two coordinates of c′(t) are 0, i.e. when t = tci for some
i ≥ 0 and thus t ∈ Ic = Ic′ .

Now consider any item c′(t), for any c ∈ C and t 6∈ Ic′ . Let c′(t) = 〈c(t), η, κ〉,
necessarily with η, κ 6= 0. From the definition of c′ we see that κ = tci+1 · η.
Consequently, we can deduce the value of tci+1, and thus of tci and i. Given η, this
means that (at most) two values of t are possible and both satisfy tci < t < tci+1,
for the time index i we found. Thus, for all i, j ≥ 0 with i 6= j, the segments
{c′(t) | tci ≤ t ≤ tci+1} and {c′(t) | tcj < t < tcj+1} must be disjoint. ut

We conclude that Q is a faithful projection of P ′. ut

The examples in Sections 4.1 (Finite-state systems) and 4.3 (Reasoning)
show that the given results are essentially best possible as regards dimension-
ality.

9.4 Discrete processing systems - examples

The examples in Sections 4.1 (Finite-state systems) and 4.3 (Reasoning) were
recognized as examples of discrete processing systems. We now give a few more
examples that show the general applicability of the results.

State-based systems In the classical theory of computation, many ‘machine
models’ are known that are all based on some kind of recipe for the stepwise,
systematic transformation of a data configuration of some kind. At any moment
in time, the data configuration is typically composed of the current state of
the processor(s), the data stored in memory, and the present interaction status
(describing the status of the various input and output channels). In many cases,
the data configurations can be encoded in a finite instantaneous description of
the system, using symbols from some finite alphabet Σ, with proper tokens for
separating the various components of the configuration.

Consequently, a classical machine model can be seen as a discrete processing
system Q = 〈Σ∗, E, δ, E0, V 〉 that produces discrete maps v corresponding to
the allowable runs of the system, with vσ : N → Σ∗ such that vσ(t) = the
t-th instantaneous description entered in run σ. We take Σ∗ to be a metric
space with distances based on viewing strings in Σ∗ as integers in ||Σ||+ 1-ary
notation and thus as unique integers in N. We let E be the knowledge space
of possible outputs, and define δ : Σ∗ → E such that δ(α) = κ when α is the
encoding of an instantaneous description with output κ and δ(α) = undefined
otherwise.

Understanding Computation 69

This generalizes the example in Section 4.1 (Finite-state systems) to a very
broad class of machine models of discrete computation, from Turing machines
and random-access machines to all sorts of extended versions of it. Let M be
any classical machine from this class, and let QM be the discrete processing
system corresponding to M .

Lemma 17. QM is a 1-codable processing system.

Proof. As N is closed in R, we see that Σ∗ with the chosen metric is embeddable
in R, say by means of the isometry h. Next, every discrete map v generated
by QM can be continualized to a curve in R by adding (‘computing’) paths
between successive items h(vi) and h(vi+1) in R, for i = 0, 1, · · · (as in Section
8.2). In this way we obtain a background process P = 〈R, E′, δ′, E0, C〉 of QM ,
which is computational by assumption on M . Hence QM is 1-codable. ut

It is reasonable to assume that the continualizations referred to in the proof
can be achieved by adding ‘straight-line paths’ between the successive items
h(vi) and h(vi+1) for i = 0, 1, · · ·. In this case the background process P we
constructed will consist of piecewise-linear computations only. Applying Theo-
rem 19, this gives the following result:

for every discrete-state model of computation M , the corresponding dis-
crete processing system QM is the faithful projection of a computational
process PM with action space R3 and piecewise-linear curves as compu-
tations.

The result may be seen as the strongest characterization of discrete computation
in the classical sense of the theory of automata. The actual action space of PM
may be a Rk for some k different from 3, depending on the encoding of M ’s
instantaneous descriptions and the metric on them. It is the general result
underlying the case of finite-state systems discussed in Section 4.1.

Internet searching The final example probes the domain of internet search-
ing, from the viewpoint of the current notions. It refines the example as we
originally envisioned it in [45].

Let W denote the worldwide web, M a computer connected to W , and π the
client program of a search engine running om M . We assume π is fed queries
and attempts to answer them using information from W . We begin by viewing
the actions of π as that of a suitable discrete processing system.

We assume that π is operating in discrete time steps, at all times acting on
a finite set of parameters in numeric encoding. Let U be the space consisting
of all instantaneous descriptions of π, running on M and accessing parts of W .
Clearly, U may be seen as a, potentially very large, metric space isometric to
an Nk for some, potentially very large, k > 0.

Let E be the space of all ‘query;answer’ pairs as they may be known from
(‘found on’) W , enriched with a straightforward inference relation defined on
them. U and E are linked by the map δ : U → E that delivers (‘reads out’) the
content of the ‘query’ and ‘answer’ parameter fields to the observer as they are
contained in the relevant instantaneous description. (This could give undefined

70 J. van Leeuwen and J. Wiedermann

if the search is not finished or came up with no answer. If the answer is a list of
facts or links, δ might select a top percentile of that list.) Furthermore, let base
set E0 consist of the instantaneous descriptions of π corresponding to a valid
starting configuration, with any allowable (expressible) query q in the query
field and ’blank’ in the answer field of it.

For any query q, let vq be the discrete map N→ U that lists the consecutive
instantaneous descriptions that result from searching the web with q. If the
search ‘stops’, vq is assumed to simply cycle on the answer forever. The semantic
maps reads it out when called. Let V be the set of all discrete maps as they
are obtained this way. We contend that the discrete processing system Qπ =
〈U,E, δ, E0, V 〉 naturally represents ‘internet searching’ as a case of discrete
computation.

Lemma 18. Qπ is a k-codable processing system, where k is the ‘dimensional-
ity’ of π.

Proof. By assumption, π’s action space U is isometric to Nk, where k is the
number of parameters encoded in its instantaneous descriptions. As before, Nk
is closed in Rk, and thus U is embeddable in this very space.

For every query q, the discrete map vq can be continualized as in the previous
example, by adding piecewise-linear paths between consecutive items of vq. The
resulting process is a valid background process for Qπ with an action space equal
to Rk. Thus Qπ is k-codable. ut

Using that Nk ≡ N (i.e. have equal cardinality), one may define an implied
metric on Nk such that Nk becomes, in fact, isometric to N. The semantic
map δ can be adapted such that it ‘decodes’ the isometry and gives the same
output as the original δ. Thus, if one is willing to afford the encoding, Qπ
actually becomes a 1-codable system. We do not consider this a very natural
representation.

We conclude that internet searching is definitely computational, according
to our framework. Leaving matters of coding aside, the following result is ob-
tained:

for every search engine π, the corresponding discrete processing system
Qπ is the faithful projection of a computational process Pπ with action
space equal to Rk (some k > 0) and piecewise-linear curves as computa-
tions.

This concludes our analysis of the phenomenon of discrete computation, seen
as an observed outcome of continuous computational processes.

9.5 Reflection

In the first part of this report we took Turing’s claim that ‘all machinery can be
regarded as continuous’ [42] and developed the theoretical framework to support
it. This lead to the notion of computational processes and to a definition of
computations in a broad sense. In Sections 8 and 9 we studied the implication
for the domain of discrete computation.

Understanding Computation 71

In his 1948 report [42], Turing did not present an overall framework that
would encompass both the continuous and the discrete view of ‘machinery’. He
merely stated that

[. . .] All machinery can be regarded as continuous, but when it is possible to regard it

as discrete it is usually best to do so.

This strongly suggests that he perceived discrete computation as a special view
of continuous computation, namely when this view is sufficiently informative of
what the computation achieves.

The attempt to develop a general philosophy of discrete computation, led us
to the notion of discrete processing systems and the discrete maps they can po-
tentially generate. Here, discrete processing systems are presented as discretely
observed computational processes, in a very broad sense and conforming to the
idea expressed by Turing.

In Sections 8 and 9 we have subsequently shown that this approach is viable.
The theoretical framework is intuitive and of an attractive generality. Turing’s
clear suggestion that it should be possible to regard discrete computation as
an instance of what general, continuous, machinery can do, is well reflected in
the definitions and in the various results that express that ‘discrete processing
systems are projections of computational processes’.

In the following sections, we turn to the study of general computational
processes again, knowing that discrete computation is a special case of it.

10 Functional processes and step-generation

The challenge in understanding computational systems of any kind is to discover
the driving regulatory mechanisms and laws that can explain, and possibly
predict, the computations they generate in their action space. This leads us to
a further aspect of discrete computations, namely the challenge of explaining the
knowledge-carrying steps as the result of a ‘law’ of some kind. Could an attentive
observer be led to the discovery of an unmistakable step-generating mechanism,
based on some regularity in the computations? Could this mechanism even have
the character of a program, whatever this might be?

In our epistemic philosophy of computation there is no standard notion of
‘step’ as we know it in traditional machine models. At best one could define a
‘step’ as the action of a computational process during an interval in between
two action items of A with defined δ-values, with some notion of ‘interval’ that
is set by an observer. It is generally not applicable, as it hides the underlying
computation and its causal effects over time. Nevertheless, an observer may still
want to track a computation in terms of ‘steps’, with the steps being generated
by a ‘repeatable’ process (triggered anew every time a step is completed).

In this section we will show that this scenario is feasible for those compu-
tational processes that are both operationally discrete and operationally or ob-
servationally deterministic. (Recall that observationally discrete processes are
operationally discrete too, by Theorem 10, and also that all observationally
deterministic processes are repeatable, by Lemma 12.)

72 J. van Leeuwen and J. Wiedermann

To achieve it, we resume the discussion of repeatable processes from Subsec-
tion 7.1 and define what it means when such a process may be said to compute
a function. We then show that repeatable processes can indeed be made to serve
as step-generating mechanisms. Finally, we comment on the analogy between
step-generating processes and ‘programs’.

10.1 Functions from repeatable processes

Let P = 〈A,E, δ, E0, C〉 be a computational process, and assume that P is
repeatable. It means that the computations c ∈ C are completely determined
by the δ-value of their initial position. Consequently, the computations of P
lead to a functional relation between the initial knowledge they start from and
the knowledge they produce in the resulting course of action.

This property of repeatable processes allows us to compute functions over
the knowledge space E. We just initialize P at a feasible initial point, watch
the unique computation that it generates from there, and extract a unique
outcome from the computation, by some criterion. In this report we chose to
run a computation to infinity, observing whether it ends up converging to a
specific knowledge item. Of course we rely on the observer’s capabilities for
inspecting the computations here.

Definition 49. A computation c ∈ C is said to converge to knowledge item
e ∈ E if there is a time u ∈ [0,∞) such that δ(c(t)) = e for all t ≥ u.

We say that a computation c ‘eventually converges’ if there is a time u and a
knowledge item e ∈ E such that δ(c(t)) = e for all t ≥ u. In this case we also
say that c ‘converges at time u’.

We could have used other definitions here. For example, we could have used
‘strong convergence’, requiring that a computation converges when it actually
stabilizes on one specific action item of A. However, this stronger criterion is
not within the normal observational powers of the observer, who only has the
semantic map δ to ‘view’ computations. Therefore we do not use this stronger
version here.

In the following definition we assume that P = 〈A,E, δ, E0, C〉 is a repeat-
able process.

Definition 50. The repeatable function fP : E0 → E computed by P is the
partial function determined as follows. For any e0 with e0 ∈ E0:

– if there is no c ∈ C with δ(cinit) = e0, then fP (e0) = undefined.
– if c ∈ C has δ(cinit) = e0 and c does not converge, then fP (e0) = undefined.
– if c ∈ C has δ(cinit) = e0 and c converges to e ∈ E, then fP (e0) = e.

By the nature of repeatable processes, fP is well-defined. However, as in the clas-
sical theory of computation, we have no means for telling beforehand whether
fP (e0) is ‘defined’ or not, for any particular starting item e0. This has very
similar consequences as in the classical theory.

If repeatable processes are used to compute functions over their knowledge
domain, we also refer to them as functional processes.

Understanding Computation 73

Computable functions If we let E0 correspond to a space of ‘input values’
and all of E to a space of potential ‘output values’, then repeatable processes
give a means for studying computable functions, using the broad notion of
computation as defined here.

It would be interesting to develop a theory of computable functions, now us-
ing the notion of repeatable functions. This would require the ability to manipu-
late and/or combine different repeatable functions, hence repeatable processes,
in ways that go beyond our present assumptions. For example, one might need
that convergence is in fact observable, i.e. that the item to which a computation
converges in fact contains some knowledge that the action of the process has
converged. We leave the development of a general theory of repeatable functions
as an interesting topic.

10.2 Steps in operationally discrete processes

Let P = 〈A,E, δ, E0, C〉 be a computational process. From an observational
viewpoint, the computations of P unfold as curves in A, passing through action
items whose ‘information content’ can be observed (extracted) by means of the
semantic map δ. We now ask whether the curves, as they unfold, may result
from some kind of ‘law’ that governs the underlying generative process.

If A would be a continuous vector space like Rn, one might attempt to
describe the curves by multivariate Taylor expansions and roll them out in
discrete steps. In our case, we do not have this analytic possibility. In stead,
we consider another possibility for the observer to view the development of the
computations in time, namely that of determining steps along every curve, in
some meaningful way, and having a ‘modified’ computational process generate
the steps.

In general one will not be able to subdivide a computation into steps mean-
ingfully. No matter how small the steps are taken, one will loose loosing sight of
all of the computation and all of the information (knowledge) that it generates
during a step. There is a clear exception, namely the case of (operationally or
observationally) deterministic, operationally discrete processes.

In this section we will show that the computations of these processes al-
ways allow for a natural subdivision into steps, in such a way that no actual
information is lost ‘during a step’. For completeness, we recall the definition of
operationally discrete processes from Section 7 (Definition 32). The processes
were discussed at length in Sections 7 and 9.

Definition 51. A process P = 〈A,E, δ, E0, C〉 is called operationally discrete if
for every computation c ∈ C, the set {t | δ(c(t)) is defined} has no accumulation
points (in R).

Example 9. Deterministic, operationally discrete computational processes are
not rare. To see this, consider the discussion of state-based systems in Subsec-
tion 9.4. It was argued that all classical machine models could be described as
computational systems over an action space consisting of their ‘instantaneous
descriptions’. (The descriptions need not be finite, as in the case of Abstract
State Machines.) In all these models, the stepwise action of their underlying

74 J. van Leeuwen and J. Wiedermann

program can be effectuated in this space, while maintaining the stepwise prox-
imity requirement that is needed for the continuity of the resulting curves. (For
Abstract State Machines, this requires the Bounded Exploration Postulate.)

Specialize this setting to deterministic machine models that are driven by a
single program π, operating on pre-defined inputs. If the program terminates in
finite time, we let it cycle on its final configuration so its (discrete) computations
are valid as discrete maps on infinite time. It may be argued that for every π,
the 1-codable discrete processing system that models the processing of inputs by
a machine of this kind, has a background process that is operationally discrete
and operationally deterministic.

Characteristic properties The simple, but relevant property of discrete com-
putational processes that we will exploit, is the following. We use the following
helpful notation.

Notation 7 For c ∈ C and T ≥ 0, let nextc(T) = min{t > T | δ(c(t)) is defined}
if the minimum exists, and nextc(T) = undefined otherwise,

For discrete computational processes, the value of nextc(T) is always defined
when {t > T | δ(c(t)) is defined} is non-empty, i.e. for every time T ∈ [0,∞),
there is a first later moment t for which δ(c(t)) is defined, unless there is no
t > T at all for which δ(c(t)) is defined. (This follows from Lemma 14.)

For any computation c ∈ C and time T ≥ 0 with δ(c(T)) defined, the action
interval from T up to nextc(T), if the latter is defined, qualifies as a ‘step’ in c:
after all, for any time t with T < t < nextc(T), one has δ(c(t)) = ‘undefined’.
Nothing is ‘missed’ if we skip these intermediate times. It is fine that steps
depend on T , i.e. that they are potentially of different length depending on
their starting moment T .

It is a different matter that, in this way, the notion of ‘step’ apparently
depends on the particular computation c we happen to be considering. In the
deterministic case, this is less of a problem than it seems at first sight. The
following fact is an immediate consequence of the distinctive behaviour of all
deterministic, operationally discrete processes.

Lemma 19. Let P = 〈A,E, δ, E0, C〉 be operationally discrete, and let P also
be operationally or observationally deterministic. Let c, d ∈ C, α ∈ A and
t1, t2 ∈ [0,∞) be such that c(t1) = d(t2) = α, with δ(α) defined. Then, both
nextc(t1) and nextd(t2) exist, or both have the value undefined. If both exist,
there is a ρ > 0 such that nextc(t1) = t1 + ρ and nextd(t2) = t2 + ρ (and clearly
c(t1 + ρ) = d(t2 + ρ)).

Proof. If c(t1) = d(t2) = α with δ(α) defined, then ct1 = dt2 , by the fact
that P is operationally or observationally deterministic. This means that {t >
t1 | δ(c(t)) is defined} = {t > t2 | δ(d(t)) is defined}. Consequently, as P is
operationally discrete, both nextc(t1) and nextd(t2) exist, or both have the vale
undefined. If both exist, Lemma 14 and the fact that ct1 = dt2 imply that
nextc(t1) = t1 + ρ and nextd(t2) = t2 + ρ for some ρ > 0. By the fact that
ct1 = ct2 , it follows that c(t1 + ρ) = d(t2 + ρ). ut

Understanding Computation 75

It follows from the lemma that, once computations begin to concur (even in the
eyes of the observer), then so do the step notions for them.

Extension Ultimately, we want more than just a notion of ‘step’ alone. We
want to be able to link all ‘consecutive’ observable action items α and β along a
curve (or: computation) c in some lawlike manner, i.e. such that β follows from
α by some modified process. Lemma 19 suggests that this may be like generating
a gradient flow leading from α to β, and from β to the next observable action
item, and so on.

This interpretation turns out to be valid, for all deterministic discrete pro-
cesses. Recall the following definition (cf. Definition 8).

Definition 52. An action item α ∈ A is said to be visited by computation
c ∈ C if there is a t ∈ [0,∞) such that c(t) = α. We say that α is observable if
δ(α) is defined.

If an action item α is visited by c, one usually has a moment t in mind for
which c(t) = α. The following observation extends Lemma 19.

Theorem 20. Let P = 〈A,E, δ, E0, C〉 be operationally discrete, and also op-
erationally or observationally deterministic. Let α ∈ A be observable, i.e. such
that δ(α) is defined. Then, if α is visited by c, and later items x along c follow
with δ(x) defined as well, then this is the case for all computations of P that
visit α. Moreover, the next action item x that follows α and is observable, is
uniquely determined, i.e. the action item is the same for all computations of P
that visit item α.

Proof. Let α be visited by c, let δ(α) be defined, and let t1 be any time such
that c(t1) = α. Assume that {t > t1 | δ(c(t)) is defined} is non-empty. P is
operationally discrete, and thus nextc(t1) exists . Say we have c(nextc(t1)) = β,
for some β ∈ A.

Consider any other time t2 and any computation d ∈ C (possibly different
from c) such that d(t2) = α. Given that P is operationally or observation-
ally deterministic, it follows that ct1 = dt2 . As we assumed that {t > t1 |
δ(c(t) is defined} is non-empty, so is {t > t2 | δ(d(t)) is defined}. Because c and
d coincide from times t1 and t2 onward respectively, we have that nextd(t2) is
defined also and, hence, that d(nextd(t2)) = β, by applying Lemma 19.

We conclude that, if α be visited by any computation c, and further action
items with defined δ-value follow along c, then these items follow along the
curve of any computation passing through α, and β must be the next action
item with a defined δ-value that is visited, by all of them ut

10.3 Step functions and their iteration

We have shown that computations of deterministic, operationally discrete pro-
cesses P can be subdivided into observer-relevant ‘steps’, in such a way that
during the steps no meaningful information is lost and, moreover, consecutive
steps are linked in a deterministic fashion. (Without the latter property, the
observation would hold for all operationally discrete processes.)

76 J. van Leeuwen and J. Wiedermann

From a philosophical perspective, it is interesting to note that the time
interval spanned by a step, or, better yet. the arc length between its end points,
may be seen as a measure for how difficult it is to generate a new piece of
knowledge. We will discuss these aspects later, in Section 11.

By the stated property, computations of P may be looked at in a step-by-
step way, as a sequence of consecutively generated steps. We now elaborate on
the idea that this sequence might be seen as the result of an iteration, namely
of a separate, step-generating process.

Step functions To begin with, we consider the generation of steps in compu-
tations of P in more detail. Theorem 20 showed that, if an observable action
item α is visited by a computation c, then the next observable action item β
that is visited, if it exists, is uniquely determined, for all computations that
ever visit α. Thus, the succession of steps is governed by a fixed rule that maps
observable action items to ‘next’ observable action items. It is expressed in the
following definition.

Definition 53. Let P = 〈A,E, δ, E0, C〉 be operationally discrete, and let it
also be operationally or observationally deterministic. The step function deter-
mined by P is the partial function gP : A → A defined as follows, for any
α ∈ A:

– if α is not visited by any computation in C, then gP (a) = undefined.

– if δ(α) is undefined, then gP (a) = undefined.

– if α is visited by, say, computation c ∈ C and δ(α) is defined, and there is
at least one more action item with a defined δ-value α that is visited by c
after it visited α, then gP (α) = β, where β is the next action item with a
defined δ-value visited by c.

– if α is visited by, say, computation c ∈ C and δ(α) is defined, and there
are no more action items with a defined δ-value that are visited by c after it
visited α, then gP (α) = undefined.

Theorem 21. The step function gP is well-defined, for any process P that is
operationally discrete and operationally or observationally deterministic.

Proof. This follows immediately from Theorem 20. In particular, the 3-rd and
4-th clauses of the definition are independent of the particular computation c
that visits item α, by the properties of P . ut

Clearly, the consistency conditions that are required for all computations of
P , manifest themselves at the step level. In particular we have the following.

Proposition 7. For all α ∈ A, if gP (α) 6= undefined, then δ(α) |=∗ δ(gP (α)),
where |= is the inference relation of E.

Proof. This follows because, when gP (α) 6= undefined, there must be a com-
putation c ∈ C and times t1, t2 ∈ [0,∞) with t1 < t2 such that c(t1) = α and
c(t2) = gP (α). Thus α |=∗ gP (α), as implied by the consistency condition that
must hold for c. ut

Understanding Computation 77

Iteration When we graphically represent gP as a function on A, with arrows
pointing from α to gP (α) for all items α ∈ A with gP (α) defined, then we obtain
the field of computational flow for the computation of P . Using the notion of
discrete traces defined in Section 4, we may observe now that any computation
c of P may be fully traced by starting in cinit and iterating gP from this point
on, step by step. More generally:

the discrete traces of the computations in C are fully determined by the
starting points in the set C0 = {cinit | c ∈ C} and the step function gP .

Finally, the following theorem summarizes that the discrete traces indeed
give us all the information that P can generate, and that no information is lost
at the level of the steps. For i ∈ N, let giP denote the i-th iterate of gP , where
g0P is understood to be the identity map on A.

Theorem 22. Let P = 〈A,E, δ, E0, C〉 be operationally discrete, and let it also
be operationally or observationally deterministic. Then EP = δ(

⋃
i g
i
P (C0)),

where C0 = {cinit | c ∈ C}.

In the characterization of EP in Theorem 22, the time-dimension of the
computations is no longer visible.

10.4 Step-generating processes

For the processes P we are considering, it would be interesting if the values of
gP could be computed in ‘unit time’ (whatever this means at this stage). It is a
common assumption in classical views of discrete computation. But is it always
the case, in general?

Differentiability For computing gP -values one might use process P itself. One
might try to start a computation of P at any allowable α ∈ A with δ(α) ∈ E0,
and rely on the observer to detect when a step is completed, by asking him
to monitor the computation until he sees that a next action item is visited
for which δ is defined. We believe an observer will not be able to do this in
general, regardless of whether he understand the underlying mechanism or not.
We prefer the step function to be delivered by a computational process again.

If we want to compute gP , we need a repeatable process that can produce
it. In the following definition we specify the requirements for this.

Definition 54. Let P = 〈A,E, δ, E0, C〉 be observationally discrete, and let it
also be operationally or observationally deterministic. P is said to be differen-
tiable if there is a repeatable computational process RP = 〈A′, A, δ′, A0, C

′〉 such
that:

– A0 = {α | α is visited by a computation in C and δ(α) is defined},
– the repeatable function computed by RP is equal to gP : fRP = gP .

If a process RP as required in the definition exists, it is called a step generating
process for P . A step generating process ‘explains’ the observable steps of the
computations of P . Note that the knowledge space of RP is equal to A, the

78 J. van Leeuwen and J. Wiedermann

action space of P . We assume the trivial inference relation on A. The set A0

need not to be known explicitly. Step generating processes are not necessarily
unique.

Clearly, if P is differentiable, a step generating process for P exists only if
there is a mechanism that effectuates it. Then, when RP is known, the observ-
able part of any computation c ∈ C can be generated provided RP is initialized
to the proper starting state with δ′-value equal to cinit. Then one should run
RP , wait for it to converge, and repeat. Each time RP converges, it delivers the
next observable action item of c as ‘knowledge’. In practical use, convergence
should be observable as soon as it occurs.

Existence of step generating processes The computability of the step gen-
erating functions gP is an interesting question for all deterministic, operationally
discrete processes P . If the values of gP could be assumed to be computable
in ‘unit time’ (whatever this means here), then the computations of P may as
well be re-timed and run on the standard time scale 0, 1, · · · in stead. This is a
common assumption in classical views of discrete computation, which finds its
proper perspective here.

One may argue that a step generating process for P should be derivable
from P itself. It requires that the mechanism that underlies the behaviour
in between the observable stages of P ’s computations can be made concrete
and understood, in a computational sense. Steps are normally implied by the
control of the process, and play a role in the perception of a process as a discrete
processing system, in the sense of Definition 36.

Overall, if a process P is deterministic and operationally discrete, then it
must have the following property, if its computations are to be generable by
individual step generation:

P should be differentiable, and it should admit a step generating process
RP of which all computations are (observably) convergent.

As an illustration, we argue that many classical machine models have precisely
this property. Philosophically, it means that the property seems to isolate the
essence of computational discrete processing in classical theory.

Theorem 23. LetM be a classical deterministic machine model, governed by a
program π. ThenM’s behaviour can be modeled by a process P = 〈A,E, δ, E0, C〉,
with C consisting of the computations that correspond to the processing of pre-
defined inputs under π. Moreover, P can be defined such that it is differentiable
and has a step generating function whose computations all converge.

Proof. (Sketch.) In Example 9 we argued that M may be seen as a ‘1-codable
discrete processing system’, with a background process P that is operationally
discrete and operationally deterministic. The step generating function gP is
seen to correspond precisely to the function that maps instantaneous descrip-
tions of M to instantaneous descriptions of M, by the stepwise action of π.
This immediately implies that P is differentiable, as the values of gP can sim-
ply be computed by the repeatable process RP that works like P when given

Understanding Computation 79

(the knowable action item corresponding to) an instantaneous description to
start from, but now converges as soon as the next instantaneous description is
obtained as knowledge item. RP is easily designed such that all its computa-
tions converge. ut

In the case of the theorem, one may well assume that action items α of RP
have a defined δ’-value if and only if α corresponds to (the knowable action
item corresponding to) an instantaneous description ofM. If the machine does
not have any instantaneous descriptions that lead to themselves again ‘in one
step’, then RP may be assumed to be observationally deterministic. This will
be the case for many classical models.

10.5 Reflection

The notions in this section were tuned to a particular class of processes, namely
to discrete processes that are deterministic. These processes appear to abstract
the most salient properties of many classical models of discrete computation
that have studied. It is intriguing that the functional properties of deterministic,
operationally discrete processes seem sufficient to obtain all characteristics of
stepwise processing normally associated with discrete systems.

Even more far-reaching is the following observation. Recall that, in our ap-
proach to computation, we made no assumptions on what mechanism precisely
triggers the underlying computational processes. In particular, no notion of
program was assumed, nor needed. However, for the case of deterministic, oper-
ationally discrete processes P , a notion of program seems to emerge naturally
when we look at their behaviour.

To argue this, assume that P satisfies the property we identified above.
Thus, assume that P admits a step generating process RP whose computations
are all (observably) convergent. Then RP may be seen as a program for P , i.e.
for its computations. Moreover, this may well define the notion of program in
a generic way, very generally and independent of any descriptive context like a
programming language or algorithmic concepts. It is the proper notion for the
general framework here. It would be interesting to develop a ‘model of (discrete)
computation’ based on this notion.

Clearly, if we would require a process RP to be operationally discrete, and
also operationally or observationally deterministic again, then this would allow
us to define a concept of higher-order differentiation. For example, a second-
order step-generating function would be step-generating for a first-order process
like RP . We leave the exploration of this possibility as an interesting topic for
further study.

Finally, the fact that step generating processes emerge naturally for the
types of processes we are considering, is interesting from a philosophical view-
point. After all, it points to the potential existence of an explicit mechanism of
causation in their generation of knowledge (or ‘emergence’): each time a new
item is reached in the generative process, a next causal piece of knowledge is
generated (by the next step).

80 J. van Leeuwen and J. Wiedermann

11 Complexity of computational processes

Given our current understanding of computations and of computational pro-
cesses, the question arises whether and how common notions of ‘computational
behaviour’ may be captured in the framework. Is it possible to define notions
related to the limiting behaviour of computations and notions of computational
rigor or difficulty in the present framework? How might it relate to the compu-
tation of concrete knowledge sets?

In this section we first discuss some aspects of the behaviour of compu-
tations ‘in the limit’, namely the possibility of stabilization and some general
properties of loops. Next we consider so aspects of structural and computational
complexity and prove several general results for them. Finally, we reflect on the
question what properties of computational processes may be ‘knowable’.

11.1 Stabilizing computations

Let P = 〈A,E, δ, E0, C〉 be some computational process. If a computation is
traced, it may well occur that it gets stuck at a particular action item. We
consider the phenomenon in general terms and discuss how it may influence
our view of how knowledge may be generated by computations.

Definition 55. A computation c ∈ C is said to stabilize at time u ∈ [0,∞) if
δ(c(u)) is defined and c(t) = c(u) for all t ≥ u.

We will say that a computation c ‘eventually stabilizes’ if there is a time u such
that c stabilizes at time u. The following observation follows easily from the
continuity of computations in A.

Lemma 20. If a computation stabilizes at a finite time u, then there is an
earliest moment at which it stabilizes.

Proof. Let c ∈ C be an arbitrary computation, and assume that the set Sc =
{u | c stabilizes at time u} is non-empty. Let ν ≥ 0 be the greatest lower bound
of Sc. If ν ∈ Sc, we are done.

Suppose, on the other hand, that ν 6∈ Sc. Then there must be an infinite
decreasing sequence ν1 > ν2 > · · · in Sc that converges down to ν. Let t be
an arbitrary time moment with t > ν, and let i ≥ 1 be an index such that
t ≥ νi. (Such an index must exist.) Then c(t) = c(νj) for all j ≥ i, as all νj
are elements of Sc. Hence c(t) = limj c(νj) = c(limj νj) = c(ν), by continuity of
c. Consequently, δ(t) = δ(ν) and, in particular, δ(ν) is defined as δ(t) is. Thus
ν ∈ Sc, contradicting our supposition.

It follows that ν ∈ Sc, which proves the result. ut

We encountered a concept closely related to stabilization in our earlier dis-
cussion of repeatable processes, namely convergence (cf. Definition 49). It may
be seen as the ‘observable’ counterpart of stabilization. Note that, if a compu-
tation stabilizes at some time u ≥ 0, then it also converges at that time. The
converse holds only in special cases.

Understanding Computation 81

Lemma 21. Let P be observationally deterministic. Then a computation c of
P eventually stabilizes if and only if it eventually converges.

Proof. We only need to show the ‘if’-part. Thus, let c ∈ C be an arbitrary
computation, and suppose that c eventually converges. Let u ∈ [0,∞) and
e ∈ E be such that δ(c(t)) = e for all t ≥ u. Consider any time t with t ≥ u. As
δ(c(t) = δ(c(u)) by convergence, it follows by the observational determinacy of
P that ct = cu, hence c(t) = c(u). Thus c stabilizes at time u. ut

Now recall that observationally deterministic processes are repeatable (cf.
Lemma 12) and that, for repeatable processes P , the repeatable function de-
termined by P is denoted by fP (cf. Definition 50). It leads us to the following
further observation.

Corollary 6. Let P be observationally deterministic. Then for any e0 ∈ E0 we
have that fP (e0) is defined if and only if there is a computation c ∈ C with
δ(cinit) = e0 which eventually stabilizes. In the later case, fP (e0) = δ(c(u)) if c
stabilizes at time u.

Proof. This immediately follows from Definition 31 and Lemma 21. Note that,
by observational determinacy, if a c exists with the stated property, it is uniquely
determined. ut

Corollary 6 directly applies the theory in Section 10. To check this, let
P be operationally discrete, and let it also be operationally or observationally
deterministic. Let P be differentiable, and suppose that it has a step generating
process RP that is observationally deterministic. (This will be the case for many
classical machines, as argued in the comments following Theorem 23.) Then the
values of gP can be computed by RP by watching for stabilization (if possible)
rather than convergence of the process.

Knowledge by stabilization Generalizing this, if the stabilization of the
computations of a given process were detectable by an observer, it could give us
an alternate way to define the computed knowledge of a computation. (Compare
Definition 15.)

Definition 56. Let P = 〈A,E, δ, E0, C〉 be a computational process. Write
SP =

⋃
{Ec | c ∈ C and c eventually stabilizes}. Then SP is said to comprise

the knowledge computed by P ‘by stabilization’.

Clearly SP ⊆ EP . To say more about the two sets, we need the following
notation and a definition.

Notation 8 For any c ∈ C and time T ∈ [0,∞), let cT be the curve defined by
cT (t) = c(t) for 0 ≤ t ≤ T and cT (t) = c(T) for t ≥ T .

Definition 57. P is said to be closed under pre-emption if for all computations
c ∈ C and times T ∈ [0,∞) with δ(c(T)) ‘defined’, one has that cT ∈ C.

One may well argue that all processes should be closed under pre-emption,
once the observer, or any operator for that matter, has the capability of ‘freez-
ing’ them at any observable moment. The following observation is evident.

82 J. van Leeuwen and J. Wiedermann

Proposition 8. If P is closed under pre-emption, then SP ≡ EP , i.e. whatever
knowledge P computes, it can compute by stabilization.

Let Ic = {t | δ(c(t)) is defined} denote the domain of the observable trace
of a computation c (cf. Definition 13). If P is closed under pre-emption, then
for any computation c ∈ C the sequence of curves {cT }T∈Ic approximates c and
may be said to ‘converge’ to c. It defines the approximation of C by ‘relevant’
finite segments.

In general, it will not be ‘detectable’ by an observer whether a computation
of a given process eventually stabilizes. (In the classical theory of computa-
tion, it is an example of an ‘undecidable’ property.) In Subsection 11.5 we will
look further into the question what may be ‘knowable’ about computational
processes.

11.2 Loop condensation

Let P = 〈A,E, δ, E0, C〉 be a computational process and let c ∈ C be a computa-
tion. We called c loop-free if c : [0,∞)→ A is 1-1. The notion proved important
when we analyzed the behavioral characteristics of operationally deterministic
processes in Subsection 3.5.

If a computation c is not 1-1, then we say that it has a ‘loop’ or a ‘cycle’.
If c(t1) = c(t2) = α for some times t1 and t2 with t1 < t2, then we say that c
has a loop at α. What is the nature of loops in computations? Can one always
eliminate them, like in typical machine computations, if the ultimate goal of a
computation, whatever it might be, lies beyond the occurring loops?

We first give some general observations. Then we discuss ways in which
loops might be ‘condensed’. Let c ∈ C.

Definition 58. For every α ∈ A and T ∈ [0,∞), let Lc(α, T) = {t ≥ T | c(t) =
α}. Computation c is said to loop on α at time T or later if either Lc(α, T) is
finite and |Lc(α, T)| ≥ 2 or Lc(α, T) is infinite. We say that c has a loop, if it
loops on some α ∈ A at time 0 or later.

If a computation c loops on α ∈ A, it does not necessarily mean that it
loops on α ‘forever’, i.e. at time T or later for every T ∈ [0,∞). In our ap-
proach to computation, c may ‘cycle’ on a same action item for some time and
then not return to the same action item ever again afterwards. For the case of
operationally deterministic processes, the following observation can be made.

Proposition 9. Let P be operationally deterministic. Then for every c ∈ C,
α ∈ A and T ∈ [0,∞), the set Lc(α, T) is either empty, a singleton, or infinite.

Proof. Suppose Lc(α, T) contains at least two elements. Suppose Lc(α, T) were
finite. Let t1 and t2 be the two largest elements of L(α, T), with t1 < t2.
As c(t1) = c(t2) = α, it follows from the operational determinacy of P that
ct1 = ct2 . Then 2 · t2 − t1 > t2 (> T) and c(2 · t2 − t1)) = c(t2 + (t2 − t1)) =
c(t1 + (t2 − t1)) = c(t2) = α and hence 2 · t2 − t1 ∈ Lc(α, T). This contradicts
that t2 was the largest element of Lc(α, T). Hence Lc(α, T) must be infinite. ut

Understanding Computation 83

One may observe also that, if Lc(α, T) is infinite, it can have a cardinality up
to that of the continuum.

In general computational processes, the behaviour of loops in computations
is not different from that of cycles in curves. We need to make a few observations
before we can discuss the possibilities for loop condensation.

Lemma 22. For every c ∈ C, α ∈ A and T ∈ [0,∞), the set Lc(α, T) is
(topologically) closed.

Proof. From topology we know that a set is closed if and only if it contains all of
its limit (or accumulation) points. Let {tn} be a sequence of times in Lc(α, T),
and assume that tn → u, for some u ∈ [0,∞). Then u ≥ T , and by continuity
of c, c(u) = c(limn xn) = limn c(xn) = α. Thus u ∈ Lc(α, T). It follows that
Lc(α, T) is closed. ut

It follows from Lemma 22 that, for any T ∈ [0,∞), if c loops on α at time
T or later, then there is an earliest (smallest) time t ≥ T such that c(t) = α.
Then either c remains constant for a while, or forever, or there is an earliest
(smallest) time t > t′ such that c(t) = c(t) = α again. There is no guarantee
that c visits item α again after time t′.

Lemma 23. Let c ∈ C and α ∈ A. Assume that Lc(α, T) is bounded, and let
u = inf{t ≥ T | c(t) = α} and v = sup{t ≥ T | c(t) = α}. Then u and v are
well-defined and u, v ∈ Lc(α, T).

Proof. Because Lc(α, T) is assumed to be bounded, both u and v are well-
defined. By Lemma 22, Lc(α, T) is closed and thus we are done, as closed and
bounded subsets of R contain their infimum and supremum. ut

Simplifying loops Consider a computation c, and suppose that c has loops.
We now consider whether and how c may be altered (‘simplified’) so it has fewer
or simpler loops, in some intuitive sense.

In general, if one wants to change a computation and preserve some local
structure of it, one is led to the homotopy theory of curves in metric spaces. In
our case, the situation is even more complicated, as we also have to keep track
of the ‘intermediate knowledge build-up’ along a curve, which cannot just be
modified by a continuous transformation of any kind, without the danger of
loosing data or even computationality.

In the present general setting, only a few options seem to exist for the
‘removal’ or simplification of loops. By Lemmas 22 and 23, one of the following
situations can occur if a computation c loops on an item α:

A: there are times u, v ∈ [0,∞) with u ≤ v such that c visits α for the
first time at time u and for the last time at time v (and maybe many
more, possibly infinitely many more, times in between),

B: there is a time u ∈ [0,∞) such that c visits α for the first time at
time u, and for every time T ≥ u there is a t ≥ T such that c visits α
again at time t.

84 J. van Leeuwen and J. Wiedermann

Considering the first possibility, one obvious way to ‘condense’ the loop at α
would be to redefine c into a computation c′ with: c′t) = c(t) for 0 ≤ t ≤ u and
c′(t) = c(t+ v − u) for t ≥ u. A second possibility would be to view ‘dwelling’
as a way to neutralize a loop, i.e. to redefine c into a computation c′ with:
c′t) = c(t) for 0 ≤ t ≤ u and t ≥ v, and c(t) = c(u) = c(v) = α for u ≤ t ≤ v.
This option is easily modified so it works also for the second looping possibility.

The disadvantage of both approaches is that they potentially (also) elimi-
nate all knowledge c generates in between the visits to α. In the second case,
c is even ‘straightened’ entirely after time u. Clearly, this is no problem if c is
known to converge at of before time u.

In general, the condensations are feasible only if c generates no (new) knowl-
edge during the loop that isn’t compensated for in some way.

11.3 Structural complexity

In the definition of computational processes, we have left it fully open how
these processes actually ‘produce’ their computations. This gives the theory
the extreme generality we want, but at the same time it makes it hard to
discuss any ‘familial’ properties of the computations that are produced by a
single process. What sort of properties really bind or bound the computations
of a process?

In the preceding sections, we distinguished a number of important properties
which computational processes may have, such as determinacy and discreteness.
One may say that these properties place severe constraints on the behaviour
of computations and on their observability. Nevertheless, we have seen that
many processes share these properties as ‘behavioral characteristics’ of their in-
dividual computations. What can we say about the complexity of the generated
computations?

Let P = 〈A,E, δ, E0, C〉 be a computational process. In this subsection, we
first discuss various aspects of the complexity of C as a ‘family’ of computations
and the impact of determinacy on it. We are especially interested in the phe-
nomenon that many different computations of C can lead to a same action item
α in A. The ‘computational past’ of α consists of many intertwined segments
of computations. The following two notions are central to our analysis.

Definition 59. P = 〈A,E, δ, E0, C〉 is called operationally finitary if for all
α ∈ A, the set {c ∈ C | c visits α} is finite.

Definition 60. P = 〈A,E, δ, E0, C〉 is called observationally finitary if for all
α ∈ A with δ(α) defined, the set {c ∈ C | c visits α} is finite.

Thus, a computational process is called operationally finitary if for every α ∈ A,
there are only finitely many computations that lead to α or, stated differently,
if there are only finitely many ‘starting points’ where a computation can begin
that leads to α. For observationally finitary processes, this is limited to α’s with
δ(α) defined.

If P is operationally finitary, it is also observationally finitary. The converse
certainly holds if δ(α) is at least defined for all α ∈ A that are ever visited by

Understanding Computation 85

a computation in C. (In Proposition 6 we showed that under this very same
condition, operational and observational determinacy are equivalent.) A slightly
more general observation can be made.

Proposition 10. Let P = 〈A,E, δ, E0, C〉 be a computational process. Suppose
that, for every α ∈ A visited by a computation of C, there are finitely many
items β ∈ A with δ(β) defined such that every computation c ∈ C that visits α
also visits (at least) one of these items β later on. Then, if P is observationally
finitary, it is also operationally finitary.

Proof. Let α ∈ A be arbitrary. If {c ∈ C | c visits α} is empty, we are done.
Otherwise we may assume that, by the property of P , there is a finite set B ⊆ A
such that δ(β) is defined for every β ∈ B and every computation c ∈ C that
visits α also visits (at least) one of the items β ∈ B later on. It follows that
{c ∈ C | c visits α} ⊆

⋃
β∈B{c ∈ C | c visits β}. Because P is observationally

finitary, {c ∈ C | c visits β} is finite for every β ∈ B, hence {c ∈ C | c visits α}
is finite too. Thus P is operationally finitary. ut

Structural effects The familial consequences of determinacy manifest them-
selves most emphatically when we consider how computations might ‘intersect’
in their action space. To see this, let P = 〈A,E, δ, E0, C〉 be operationally de-
terministic. In Theorem 3 we saw that the computations of P could have one
of the following characteristics, which we will now call types: loop-free (type I),
ultimately constant (type II), and ultimately periodic (type III).

The following observation is easily made. It illustrates the structural effect
of determinacy.

Proposition 11. Let P be operationally deterministic, and let c and c′ be two
computations of P . If c and c′ intersect as curves in A, then they must have
the same type.

Proof. If c and c′ intersect, then there are an item α ∈ A and times t1 and
t2 such that c(t1) = c′(t2) = α. By operationally determinacy of P , it follows
that c and c′ have identical behaviour in time afterwards, thus for t→∞. This
implies that they must be of the same type. ut

It follows from the given argument that, if c and c′ intersect and are both of type
III, then c and c′ end up in the same non-trivial cycle. If P is observationally
deterministic, then the same proposition holds for all c and c′ that intersect in
an item α with δ(α) defined.

Let α be any action item in A. If P is operationally deterministic then, by
Proposition 11, all computations that ever visit α (at their own time) have the
same type and proceed along the very same trajectory after their visit to α. If
δ(α) is defined, the same holds when P is observationally deterministic. But,
more can be said when P is also operationally (or, observationally) finitary.

Let P be operationally deterministic. For any α ∈ A, let Cα = {c ∈ C |
c visits α}. It follows from Lemma 22 that for any c ∈ Cα, there is an earliest
(or smallest) time t = tc,α such that c(t) = α. Let c̃α denote the segment of c

86 J. van Leeuwen and J. Wiedermann

from t = 0 up to t = tα,c. For all c ∈ Cα, the segments c̃α are loop-free, and
compact as subsets of A. Also, if c, c′ ∈ Cα, then by operational determinacy
we have ctc,α = (c′)tc′,α .

If two computations of Cα meet ‘earlier’, i.e. if their segments c̃α and c̃′α
already meet in, say, item β before they meet in α, then they coincide already
from β onward. In fact, the following property holds.

Lemma 24. If c̃α and c̃′α meet before they meet at α, then there is an earliest
(smallest) time t = tα,c,c′ < tα,c at which c runs into c′.

Proof. Suppose c̃α intersects c̃′α in at least one more item, before they meet at α.
Let S = {t | t ∈ [0, tα,c] and c(t) lies on c′ before c′ visits α for the first time},
and let u be the greatest lower bound of S. Certainly (u, tα,c] ⊆ S, by opera-
tional determinacy of P . If u ∈ S, then tα,c,c′ = u and we are done.

Suppose that u 6∈ S. Then there is a decreasing sequence t1 > t2 > · · · of
times in S with u = limi ti. Obviously we have c(u) = limi c(ti), by continuity of
c, and it follows that the sequence c(t1), c(t2), · · · is a Cauchy sequence (within
segment c̃α). We also know that every c(ti) lies on the curve c′ and thus, for
every i ≥ 1 there must be a t′i such that c′(t′i) = c(ti). Hence, the sequence

c′(t′1), c
′(t′2), · · · is a Cauchy sequence as well, now within the segment c̃′α

As c̃′α is compact in A, it is also complete. Thus c′(t′1), c
′(t′2), · · · must have

a limit, say c′(u′) within the subset. Because

d(c(u), c′(u′)) ≤ d(c(u), c(ti)) + d(c(ti), c
′(v′)) = d(c(u), c(ti)) + d(c′(t′i), c

′(v′))

for every i ≥ 1, a straightforward half-ε argument shows that d(c(u), c′(u′)) = 0.
Thus c(u) = c′(u′), with u < tα,c and, because c(u) 6= α, also u′ < tα,c′ . Hence
u ∈ S, a contradiction. ut

Notation 9 For c, c′ ∈ Cα, let tα,c,c′ denote the earliest time t at which c meets
c′, i.e. in α or an item before that (on c).

We clearly have that tα,c,c′ = tα,c when c does not meet c′ before they meet at
α. By Lemma 24, tα,c,c′ is well-defined.

Now let P be operationally deterministic and operationally finitary. Define
the following ‘graph’ Tα. The set of vertices of Tα consists of all items of A
where a computation c ∈ Cα begins, item α, and all items c(tα,c,c′) where
c and c′ are two computations that meet at α or earlier. The edges of Tα are
formed by linking any two vertices that occur consecutively on the curve of some
computation c ∈ Cα, except that α is not regarded to have any successors. By
the assumptions on P , Tα is a finite and well-defined structure.

Lemma 25. Let P be operationally deterministic and operationally finitary.
Then, for all α ∈ A, Tα is a (directed) finite tree.

Proof. If Cα is empty, then Tα consists of a single vertex α only and we are
done. Thus, let Cα be non-empty. As P is operationally finitary, we know that
Cα is finite and, hence, that Tα is finite as well.

Understanding Computation 87

Now note that, as a finite graph, Tα is connected. This follows because every
vertex of Tα lies on a finite ‘path’ from that vertex to α, namely the path implied
by the computation(s) that lead from this vertex to α.

Next, we note that Tα is also cycle-free. This is straightforward when the
intersecting computations are all of type I or all of type II. In case they are
all of type III, two case occur. If α does not lie on the cyclic part of a curve,
then it does not lie on the cyclic part of any curve and we effectively have an
intersection pattern as for type I curves. If α does lie on the cyclic part of any
curve, then the vertices of the form c(tα,c,c′) lie either on a ‘stem’ that leads to
the cycle or on the cycle itself. In the first case, no cycle can be caused.

In case vertices of the form c(tα,c,c′) lie on the cyclic part of the type III
computations (note that this cycle is identical for all computations), then we
note that all edges connect vertices to immediate successors in a direction to-
wards α and do not pass beyond it. In particular, the edges cannot form a cycle,
as α does not have any successor.

Being finite, connected, and cycle-free, proves that T is a tree. ut

Tα can be interpreted as the in-tree of the computations that lead into α.
The paths towards the root represent the trajectories of the computations, and
the internal vertices correspond to the action items in A where computations
‘meet’ for the first time and become confluent, by the operational determinacy.
The leaves of Tα are the starting points of the maximal computations that lead
to α. All other computations that lead to α are subsumed by the maximal ones,
but they are important just the same, by their different starting points. We will
make this precise in Theorem 26 below.

If P is (operationally deterministic and) observationally finitary, then one
can prove a same result as Lemma 25 for all α with δ(α) defined. If process P is
observationally deterministic in stead of operationally deterministic, then the
same arguments can be applied in case P is operationally or observationally
discrete. (The main reason for the latter restriction is that it guarantees an
analogue of Lemma 22.)

Compactness Let P be operationally deterministic again. We now consider
what it means for the generation of knowledge, when P is operationally or
observationally finitary. In the analysis, we pursue the intriguing thought that
a computation, say c, may be viewed as a model for the set Ec of knowledge
items that it computes. If we accept this view, then it is natural to ask when
a given set of knowledge items has a model, i.e. is generated by a computation
of P . Can one prove a kind of compactness theorem like in Model Theory?

We first consider sets of action items B with B ⊆ A and ask the similar
question. When does B have a model, i.e. when is there a single computation c
with c ∈ C that visits all items of B, in some order?

Lemma 26. Let P = 〈A,E, δ, E0, C〉 be operationally deterministic and oper-
ationally finitary. Let B be a non-empty subset of A with the property that for
every two items α, β ∈ B, there is a computation c ∈ C such that c visits both
α and β. Then there is a computation c ∈ C that visits all items of B.

88 J. van Leeuwen and J. Wiedermann

Proof. Let α be an arbitrary element of B. By assumption, there is a compu-
tation c ∈ C that visits α. If all items of B are visited by c, then we are done.
Otherwise there is an item α′ of B that is not visited by c.

By assumption on B, there must be a computation c′ ∈ C such that α′

and α are both visited by c′. As P is operationally deterministic and α′ does
not lie on c, it means that α′ is visited before α and hence, that c′ ∈ Cα. By
determinism, all items that were visited by c before, are visited by c′.

Now repeat the argument for α′. If all items of B are visited by c′, then
we are done. Otherwise there is an item α′′ ∈ B that is not visited by c′. By
assumption on B, there must be a computation c′′ ∈ C such that α′′ and α′

are both visited by c′′. Here c′′ is necessarily different from c and c′ and, as
before, it also means that α′′ is visited by c′′ before α′. It follows that c′′ ∈ Cα′
and thus, by determinism, that c′′ ∈ Cα. Also, all items that were visited by c′

before, are now visited by c′′.
In every repetition of the argument, either a computation is found that visits

all items of B or a new computation of Cα is uncovered that visits a larger part
of B. As P is operationally finitary and thus Cα is finite, this repetition can
continue at most finitely many times. Upon termination a computation of Cα,
and thus of C, is found that, necessarily, visits all items of the set B. ut

The following variant of Lemma 26 can be shown as well, by only a minor
modification of the proof.

Lemma 27. Let P = 〈A,E, δ, E0, C〉 be observationally deterministic and ob-
servationally finitary. Let B be a non-empty subset of A with the property that
for every two items α, β ∈ B, there is a computation c ∈ C such that c visits
both α and β. Then there is a computation c ∈ C that visits all items of B.

Proof. The same argument as in the proof of Lemma 26 applies, because all
items α, α′, · · · in the proof now have defined δ-values. In this case, we only need
that P is observationally deterministic and observationally finitary to derive the
same conclusion. ut

We can now address the problem of characterizing when a set of knowledge
items has a ‘model’. The assumptions on P are modified to a form that is
appropriate, and applicable, to the case of knowledge sets.

Theorem 24. Let P = 〈A,E, δ, E0, C〉 be observationally deterministic and
observationally finitary. Let F be a non-empty subset of E with the property
that for every two items χ, ψ ∈ F there is a computation c ∈ C such that
c computes both χ and ψ. Then there is a computation c ∈ C such that c
computes all items of F .

Proof. It follows from the assumption of F that all its items χ must be com-
putable. As P is observationally deterministic, Proposition 5 implies that for
every χ ∈ F there is a unique αχ ∈ A with the property that δ(αχ) = χ. Let
B = {αχ | χ ∈ F}.

Clearly B is non-empty. Consider any two items αχ, αψ ∈ B. Because χ and
ψ are items of F , there must be a computation c ∈ C that computes both χ

Understanding Computation 89

and ψ. By observational determinacy, this means that c must visit both αχ and
αψ. This means that B satisfies the requirements of Lemma 27. The result now
follows directly by applying the very Lemma. ut

Maximality Finally, we briefly sketch a different perspective on Lemma 26
and its consequences for sets of computations. As before, let P = 〈A,E, δ, E0, C〉
be a computational process. Define the binary relation ≤A on A as follows.

Definition 61. For any α, β ∈ A, let α ≤A β if either α = β, or there is a
computation c ∈ C such that c visits α and β and α before β.

Proposition 12. Let P be operationally deterministic. Then ≤A is a quasi-
order on A.

Proof. By definition, ≤A is reflexive. In order to prove transitivity, let α, β, γ ∈
A be such that α ≤A β and β ≤A γ. Without loss of generality, we may assume
that α, β, and γ are all distinct.

As α ≤A β and β ≤A γ, there are computations c and c′ such that c visits
α and then β, and c′ visits β and then γ. By operational determinism, c follows
the same trajectory as c′ after the visit to β and, by Proposition 11, both have
the same type. If both c and c′ are of type I, then clearly c visits γ after it visits
α (and β) on its trajectory and we have α ≤A γ. This is easily argued also in
case both curves are of type II.

Suppose c and c′ are both of type III. Let t1, t2, t3, t4 with t1 < t2 and
t3 < t4 be such that c(t1) = α, c(t2) = β, c′(t3) = β and c′(t4) = γ. If t2 ≤ t3
then, clearly, the curve of c extends to γ and we have α ≤A γ again. In case
t2 > t3, we have that c(t2) = c′(t3) and thus, by operational determinism,
that c(t2 + t) = c′(t3 + t), for all t ≥ 0. Taking t = t4 − t3 (> 0), we obtain
c(t2 + t4 − t3) = c′(t3 + t4 − t3) = c′(t4) = γ and thus, again, c visits γ after it
visits α (and β) and we have α ≤A γ. ut

We now consider the quasi-order ≤A on A in more detail. Note that a subset
B of A is a chain if B is non-empty and for every α, β ∈ B we have α ≤A β or
β ≤A α (or both).

Theorem 25. Let P be operationally deterministic and operationally finitary.
Then every chain in A has a lowerbound.

Proof. Let B be a chain in A according to ≤A. The condition that for all
α, β ∈ B we have α ≤A β or β ≤A α is equivalent to the condition that for all
α, β ∈ B there is a computation c such that c visits both α and β. By Lemma
26 we conclude that there is a single computation c ∈ C such that c visits all
items of B and, consequently, that cinit ≤A α for all α ∈ B. Thus cinit is a
lowerbound of B. ut

It may be noted that Theorem 25 is essentially equivalent to Lemma 26.
Thus, the condition that P be operationally finitary appears as a natural struc-
tural requirement on the set of computations of P .

Clearly, if P is operationally deterministic and for some computation c ∈ C
and α ∈ A we have cinit ≤A α, then c visits α. If d ∈ C, then cinit ≤A dinit if
and only if d is a subcomputation of c. This leads to the following concept.

90 J. van Leeuwen and J. Wiedermann

Definition 62. Let P = 〈A,E, δ, E0, C〉 be operationally deterministic. A com-
putation c ∈ C is said to be maximal if for all computations d ∈ C such that c
is a subcomputation of d, d is also a subcomputation of c.

Theorem 26. Let P = 〈A,E, δ, E0, C〉 be operationally deterministic and op-
erationally finitary. Then every computation c ∈ C is a subcomputation of a
maximal one.

Proof. Let c ∈ C be given. An immediate proof of the theorem is obtained by
considering the graph Tcinit . By Lemma 25, Tcinit is a finite tree with root α.
Let d ∈ C be a computation whose dinit is a leaf of Tcinit . Then d is maximal,
and it clearly subsumes c.

For a direct proof one may argue as follows. If c is maximal, then we are
done. Otherwise, there must be a computation d1 6≡ c such that dinit1 ≤A cinit

but cinit 6≤A dinit1 . More generally, suppose that for some i ≥ 1 there are compu-
tations d1, · · · , di such that c, d1, · · · , di are all different, diniti ≤A · · · ≤A dinit1 ≤A
cinit and cinit 6≤ dinit1 6≤A · · · 6≤A diniti .

Arguing inductively, if di is maximal, we are done. Otherwise, there must
be a computation di+1 different from c, d1, · · · , di such that diniti+1 ≤A diniti but
diniti 6≤A diniti+1. Note that c, d1, · · · di+1 all belong to {d ∈ C | d visits cinit}.

As P is operationally finitary, the latter set is finite. As a consequence,
the inductive argument must terminate after finitely many iterations. Upon
termination, a computation d is obtained that is both maximal and subsumes
the given computation c. ut

We omit a discussion of the results in the ‘infinitary’ case, i.e. when Cα is
countable or even uncountable, for some or all α ∈ A.

11.4 Computational complexity

Consider computations as they are generated by computational processes P ,
in our framework. It is at least intuitive that some computations generate the
‘knowledge’ we want from them more easily or quickly than other computa-
tions do. This raises the question whether there is any evidence of computa-
tional complexity that might be observable, without knowing precisely how the
computations are generated. Are there ways of defining complexity in topolog-
ical terms, at the very general level of our theory? And, what precisely are we
defining the complexity of?

Let P = 〈A,E, δ, E0, C〉 be a computational process, and let e be a com-
putable knowledge item of E, i.e. for which there is at least one computation
c ∈ C that visits an item α ∈ A with δ(α) = e. The complexity of computing e
will depend on the ‘complexity’ of the segment of c that leads up to α, possibly
minimized over all computations c ∈ C and items α ∈ A with δ(α) = e that
they visit. One simple measure would be the earliest moment t ∈ [0,∞) such
that δ(c(t)) = e, for some c ∈ C.

Quantified over a suitable class of allowable processes, the time measure
gives us a well-defined notion of time complexity for knowledge items, very
similar to the notion as we know it in classical computability theory [24]. In

Understanding Computation 91

order to say more, independent of the ‘complexity’ of the generative machinery
‘inside’ any of the processes P , whatever this may mean, we need some sort
of measure for the (segments of the) curves that define computations. In this
subsection we develop a number of concepts towards this goal, to show that
this can be done in the present framework.

General properties First we argue that the framework leads to some general
properties that should hold for all computational processes. Let P be a process,
and let c : [0,∞)→ A be a computation of P . We recall notation 8.

Notation 10 For any T ∈ [0,∞), let cT : [0, T] → A be the segment of c up
to time T , and let Ran{cT } be the range of cT in A.

Thus, for any T , the map cT is the curve of c as it unfolds from time 0 up to
time T , and Ran{cT } is the set of action items visited by c during this time
period.

We first observe that cT : [0, T] → A is a continuous function. In fact, by
the Heine-Cantor theorem for metric spaces, we may assert that cT is even
uniformly continuous on [0, T]. A first simple consequence is that the range of
cT in A is a compact, thus dense, subset of A. It gives us the following property,
almost by definition.

Lemma 28. For any T > 0, Ran{cT } has the Bolzano-Weierstraß property,
i.e. every infinite subset of Ran{cT } has at least one accumulation point in
Ran{cT }.

Proof. As [0, T] is compact in R, its image under cT is compact in A. It is
well-known from topology that compact spaces are Bolzano-Weierstraß spaces.
This gives the result. ut

The compactness of Ran{cT } also implies that it is a bounded subset of A. It
leads to the following observation, for all computations. Recall that d was the
metric of A.

Lemma 29. For every c ∈ C and T > 0, there is a constant bc,T such that for
all t1, t2 with 0 ≤ t1 ≤ t2 ≤ L one has: d(c(t1), c(t2)) ≤ bc,T .

Proof. We argued that Ran{cT } is compact in A. As compact subsets of metric
spaces are bounded, the result follows. ut

Interpretation Lemma 29 has an important philosophical consequence, if we
accept the premise that distance between action items relates to computational
effort. After all, the lemma implies that, if α and β are two action items on
the path of a computation and α is visited before β, then β has only finite
distance to α. Hence, if α and β would be represented by symbolic complexes
of some kind, with a Hamming-type of distance metric on these complexes,
then the representation of β would be obtained after finitely modifying the
representation of α.

92 J. van Leeuwen and J. Wiedermann

This fact was one of the basic intuitions when we defined computations the
way we did to begin with. The intuition is now confirmed by the formal frame-
work, without any special assumption on P except for the symbolic property
of A. Note that it also ‘proves’ the bounded exploration postulate in the case of
Abstract State Machines [5], in our framework.

We can make one further observation. In Theorem 20 we proved that the
computations of operationally discrete processes P that are also operationally
or observationally deterministic, can be subdivided into steps that exactly cover
the action of P from one observable action item to the next. (This was well-
defined.) By Lemma 29, the items visited during any computation have a fi-
nite distance to each other, and this holds for all consecutive observable items
in particular. Assume again that A consists purely of items that are symboli-
cally represented, with a metric corresponding to the symbolic distance between
items. We now conclude that every step basically effectuates the finitely many
modifications, whatever this amount to, to get from one symbolic complex to
the next in a computation, seen through the ‘lens’ of the observer.

Finite complexity We have seen that ‘finite time’ amounts to ‘finite distance’
of the items that are visited in a computation. However, considering Lemma 29
again, note that there ‘distance’ is measured in the image space of computation
c, and this is not necessarily the same as the arc length, i.e. the ‘distance’ as
measured along its curve. It is not even evident that the latter is finite if the
former is.

The definition of computation suggests that the ‘arc length’ of cT as a
function of T is a better, more telling measure for the computational difficulty
of c, and thus for the complexity of generating knowledge by c, than just simple
metric distance. In order to say more, we need a few more details from the
general theory of curves.

Based on the general definition for curves, the length of a segment cT of c
can be defined as follows:

L(cT) = supnΣ
n
i=1d(ti−1, dt)

where the supremum is taken over all n ∈ N and all sequences 0 = t1 ≤ · · · ≤
tn = T in [0, T]. Segments cT do not necessarily have finite length. When a
segment cT has finite length, it is called rectifiable. The theory of rectifiable
curves is well-established in metric geometry [11].

It is easily seen that for all c ∈ C, if CT is rectifiable, then so is every
segment cT ′ with 0 ≤ T ′ ≤ T . This motivates the following definition for the
complexity of computations and computational processes, in our framework.

Definition 63. A computation c is said to have finite complexity if cT is rec-
tifiable for every T ∈ [0,∞). A computational process P is said to have finite
complexity if each computation of P has finite complexity.

Various results from the theory of rectifiable curves can be brought to bear
on the theory of computation. For example, the length of rectifiable curves is
known to be a ‘well-behaved’ function of the curve parameter [11]. For compu-
tations, this amounts to the following observation.

Understanding Computation 93

Lemma 30. For all computations c of finite complexity, L(cT) : [0,∞) →
[0,∞) is monotone and continuous in T .

We may note that many instances of classical state-based models of compu-
tation are essentially computational processes of finite complexity. This follows
because, in Section 9, we showed that these models can all be viewed as faithful
projections of computational processes with computations that are piecewise
linear curves. Moreover, the curves have only one bend in between every two
points of the discrete point set corresponding to the machine states. Here, ‘finite
complexity’ becomes equivalent to ‘finite time’ again.

Finally, we note the following examples of general classes of processes of
finite complexity.

Lemma 31. If a computational process is Lipschitz, then the process has finite
complexity.

Proof. It is well-known from metric topology that every curve segment that is
Lipschitz, is also rectifiable. The result follows. ut

Also, if A ≡ Rk for some k ≥ 1 and computation c : [0,∞)→ A is differentiable
as a curve, then known theory implies that c has finite complexity. In this case
L(cT) is even monotone and differentiable.

It is reasonable to assert that computational processes should be of finite
complexity, if the notion of complexity is to be quantifiable for them.

Measuring computations Let c be a computation, and assume that it has
finite complexity. We argued that, in this case, the function L(cT) is a sensible
indicator of the ‘complexity’ of c. However, the computational effort that goes
into producing c may depend in a much more complex way on T , especially for
T →∞.

Already, if we would account for computational effort by charging ‘by length’
along the curve c, then one would end up measuring complexity as F (L(cT)).
where F : [0,∞)→ [0,∞) is some monotone and continuous function. F could
just add a linear factor to the arc length of c, or accumulate larger amounts for
the actual effort or energy dispensed by P over time. Even if one imposes only
minor requirements on F , this may lead to undue limitations.

For example, suppose one would want to express that the computational
effort over a distance of x+ y along the curve of c is never more than that over
distances x and y summed together, possibly up to some multiplicative factor.
This leads to a Cauchy-type functional inequality F (x+ y) ≤ K(F (x) + F (y)),
for some constant K ≥ 1 and measured distances x and y along the curve. Then
the following, elementary observation can be made.

Lemma 32. Let F : [0,∞) → [0,∞) be continuous. Suppose that, for some
constant K ≥ 1, F satisfies the inequality F (x+ y) ≤ K(F (x) + F (y)), for all
x, y ∈ [0,∞). Then F is polynomially bounded.

Proof. For all x ∈ [0, 2] we have F (x) ≤M , where M = maxx∈[0,2] F (x). (As F
is continuous, M is well-defined.) Now consider any x with x > 2. Let m ≥ 1 be

94 J. van Leeuwen and J. Wiedermann

such that 2m < x ≤ 2m+1. Define 2m reals x0, · · · , x2m−1 by xj = x
2m . Observe

that xj ∈ [0, 2] for 0 ≤ j ≤ 2m − 1, and that F (x) = F (x0 + · · · + x2m−1) ≤
K(F (x0 + · · ·+x2m−1−1)+F (x2m−1 + · · ·+x2m−1)) = 2KF (x0 + · · ·+x2m−1−1).
Then, by induction and noting that F (x0) ≤M , it follows that

F (x) ≤ (2K)m · F (x0) ≤M · (2m)
2 log 2K ≤M · x1+2logK

Hence, F (x) ≤M +M · x1+2 logK for all x ∈ [0,∞), proving that F is polyno-
mially bounded. ut

The Lemma shows that, if one accepts its premises, then measuring the
computational effort by F (L(cT)) yields at most a polynomial mark-up of the
arc length and leaves the measures ‘polynomially related’. Note that, for any
k, r ≥ 0, F (x) = kxr has the property that F (x+ y) ≤ 2r(F (x) + F (y)) for all
x, y ∈ [0,∞) and thus satisfies the requirements of the Lemma.

Given the concept of computations as curves, many more notions of com-
plexity could be imagined. Further options arise if items in A are symbolic
complexes of some kind and their representations become measurable too. This
leads to considerations of representational or space complexity, depending on
the characteristics of A.

We leave it as an interesting project to analyze the general notions of com-
plexity in our framework and elaborate on it in detail.

11.5 When are properties knowable

In the actor-spectator approach we have focused on computations as they are,
i.e. on the curves of successive action as interpreted by the observer. The seman-
tic map enabled an observer to extract the computed information from them.
This gave us a rich perspective on the essence of computation.

In the course of our analysis, we saw that processes and computations could
exhibit a variety of behaviours of interest. Examples include operational and
observational determinacy, operational and observational discreteness, stabiliza-
tion, convergence and more. The evident question is whether these properties
can be observed, or even detected, with the appropriate means. Informally, the
properties that can, will be called knowable (by the observer).

We have not assumed any frame of reference for an observer that would
enable us to discuss which properties of processes or computations might be
knowable, and which might not be. One might even want to distinguish be-
tween various ways of knowing a property, e.g. between knowing it ‘up front’
or recognizing whether it is violated at any moment in time. To say more, one
needs to formalize precisely what it means for a property to be knowable for a
certain observer.

The analogous question in classical computability theory would be to ask
whether a property is decidable or not. This type of question has a long history
and is well-formalized, e.g. by using Turing machines as the underlying ma-
chine model [14]. In Subsection 9.4 we argued that all classical machine models
could be obtained as projections of operationally discrete computational pro-
cesses. Applying this to classical Turing machines, decidability questions for

Understanding Computation 95

them have appreciable counterparts for the corresponding computational pro-
cesses. It is reasonable to say that, in this case, decidable properties will be
knowable, depending on the powers of the observer. The converse depends on
this as well.

Expanding on the latter, many general properties of processes or computa-
tions are likely to be unknowable, just like many properties of classical Turing
machines and computable functions are undecidable. An example would be sta-
bilization, similar in character to the classical Halting Problem [41]. We leave
it as an interesting problem to develop a theory that would allows us to treat
knowable properties, in general or e.g. for the class of functional processes an-
alyzed in Section 10 in particular.

12 Some conclusions

In this report we considered the intricate question of characterizing the notion
of computation, in the broad sense in which it is understood today. The report
expands on the approach in [45].

The notion of computation we use is based an the epistemic philosophy
which we have developed in a number of papers since 2013 [48–50]. In this
approach, computations are seen as ‘acts’ of knowledge generation, through
the lens of an observer. This characterizes computation in a way that is model-,
algorithm- and representation free and no longer bound to the realm of classical
computers, in the classical sense.

Computational processes In order to ground computations properly, we
have developed a new and novel concept of computational processes. The idea
for it derives from a remark by Turing to the effect that ‘all machinery can
be regarded as continuous’. Following up on it, we have defined computations
as curves in a suitable metric space, with constraints to guarantee that they
generate knowledge properly. The definition enabled us to study computation
purely, i.e. as a mathematical construct. The formal theory of computational
processes is a major result of this report and a first step towards achieving a
truly general theory of ‘computation’.

As we are ultimately interested in what knowledge computations can bring
about, we did not delve into any detail of how a process produces the compu-
tations that we observe. All underlying machinery is supposed to be hidden in
the definition of the action- and knowledge spaces and in the constraints they
impose. Thus, the essence of how a process operates, in any mode or context,
is assumed to be implicit in the definition of the action items and of how they
are ‘strung together’ by the curves into computations.

Viewing computations as generating knowledge, gives a possible approach
to defining (the emergence of) understanding. From a general perspective, un-
derstanding is the ability to reveal all causes and objectives of a given subject,
as described by a given piece of knowledge. But, understanding a knowledge
item would mean that one should be able to find a ‘computation’ that leads
up to it. Thus, understanding can, potentially, be defined in the framework of
computational processes as we developed it.

96 J. van Leeuwen and J. Wiedermann

Computation The definition of computation by means of curves then becomes
a highly natural one, expressing the intuition that computation is continuous
and ‘meaningful’. We have seen that it subsumes all current views of computa-
tion based on machine models.

We did not assume anything about computational processes besides the very
fact that they can generate computations that fulfill the consistency conditions.
We did not even assume any explicit connection between the computations of a
given process, although we saw that in the case of deterministic, operationally
discrete processes a notion of ‘program’ emerged more or less naturally. Any
underlying mechanism is left fully implicit and abstract.

The philosophy of computation we developed, enabled us to concentrate on
what is really happening dynamically, from the viewpoint of an observer. More-
over, the approach enabled us to resolve Turing’s dichotomy and link continuous
and discrete computation, as we showed that the latter is merely a projection
of the former. In addition, the approach generalizes to notions of computation
that need not have a (known) physical realization, such as computations over
the reals.

Our ideas provide not only a novel look at computation. The tacit hypoth-
esis that any physically describable process may be viewed as computational,
under suitable preconditions, can be recognized in physics, biology and in other
sciences. Indeed, in most definitions, a process is viewed as a continuous action,
an operation, or a series of ‘bounded effect changes’ undertaken in order to
achieve a desired result. From a philosophical viewpoint this may be seen as a
teleological definition. It is adhered to by the notions in this report.

We expect to expand on these and other notions in further studies on the
epistemic approach to computation.

Some open problems In elaborating on the definitions, we were able to
touch on many issues that are in some way characteristic for computations and
computational processes. Many more issues remain to be investigated. This is
even more so, if one would be willing to sacrifice some of the ‘perfect generality’
of our philosophy, e.g. by choosing A ≡ Rk (some k ≥ 1).

We conclude with a number of typical open questions that arose in the
course of our analysis.

- Action spaces The only assumption we made for action spaces A was
that they are metric. This proved adequate ‘for all practical purposes’, but
it would be interesting to vary on this assumption. For example, one could
generalize and let A be a general topological space, or specialize the theory by
assuming A to be a finite-dimensional coordinate space, computations to be
bound to a manifold of some kind, and the computations of a process to be
collectively parameterized. This is all to remain focused on the understanding
of computation as a phenomenon, and is not intended to make metric geometry
computational.

- Knowledge spaces In the present approach, the consistency conditions
merely make sure that the knowledge generation that takes place in the course
of a computation c remains consistent with the inference rules of the knowledge
theory E of the observer. This, again, proved adequate for our purposes, but

Understanding Computation 97

it may well be realistic to insist on a closer tie between the progress as made
by c and the number of steps in the proof system of E. For example, one may
well insist that, for all t1 < t2 with δ(c(t1)) and δ(c(t2)) defined, the minimum
proof length needed to ascertain δ(c(t1)) |=∗ δ(c(t2)) is upper bounded by an
increasing function of the arc length from c(t1) to c(t1) along c as a curve, if
this is defined.

- Determinism In our study of computational processes, the notions of
operational and observational determinism appeared naturally. We could char-
acterize the computations of both operationally and observationally determin-
istic processes and both notions played an important role in the analysis of
operationally discrete processes. This leaves the question what more can be
said about processes that have these attractive properties. Also, can their ‘non-
determinism’ be curtailed in a sensible way, to give a wide class of processes
with attractive properties?

- Simulation In this report we explored many properties of computational
processes that are of interest from a computational viewpoint. We saw that
various types of processes could be obtained as a homomorphic image or by
means of another type of mapping from processes with other, more agreeable
properties (cf. Sections 6 and 9). Notably, we showed that discrete processes are
‘projections’ of general computational processes. Can these results be shown in
an overriding theory of process simulation, for the present framework? What
effect can one obtain from bi-simulation, in case computational processes are
used for the generation of knowledge?

- Repeatable functions In Section 10 we saw how the effect of repeatable
processes is formalized in the notion of repeatable functions. It was left open to
develop a ‘generic theory of repeatable functions’, analogous to but presumably
much more general than the classical theory of computable functions. The chal-
lenge would be to stay within the current framework of computations and their
processes, emphasizing only the functional properties that play a role. What
can be said about their ‘programmability’?

- Complexity In Section 11 we made a first attempt to define notions of
computational complexity in our framework. We pointed at the connection to
the theory of rectilinear curves, but did not digress on the alternative ways in
which computations may be measured. Also, we did not digress on how the
various notions can be used to classify knowledge items by their computational
complexity. Can one develop a sensible theory of, say, polynomial-time com-
putability, in the present framework?

- Computational processes We gave a very general definition of computa-
tional processes, as a crucial part of the machine-independent theory of compu-
tations we developed. We did not digress on computational processes themselves
as mathematical objects. What can be said about operations like composition
and interaction of processes, in the present framework?

The philosophy of computations, and the mathematical formulation of it as
outlined in this report, lead to many more challenging questions. For example,
at the most general level it allows us, essentially, to view any natural or ar-
tificial process of which we understand its operations as being computational.

98 J. van Leeuwen and J. Wiedermann

This is consistent with the views of Deutsch [16] who proclaimed, even more
pointedly, that ‘computations are physical processes and every physical process
can be regarded as computation’. However, as he rightly points out, this is also
where the interesting questions about the nature of computations begin. The
approach in the report gives a framework to address them.

References

1. A.V. Aho, Computation and computational thinking, The Computer Journal 55:7 (2012)
832-835.

2. M.A. Arbib, Automata theory and control theory - a rapprochement, Automatica 3 (1966)
161-189.

3. M.A. Arbib, Tolerance automata, Kybernetika 3 (1967) 223-233. Also in: R.E. Kalman,
P.L. Falb, M.A. Arbib, Topics in Mathematical System Theory, McGraw-Hill, New York,
1968, Chapter 6.4, pp. 179-184

4. L.W. Beck, The actor and the spectator - Foundations of the theory of human action, Yale
Univ press, 1975 (reprinted: Key Texts, Thoemmes Press, 1998).

5. A. Blass, Y. Gurevich, Algorithms: A quest for absolute definitions, Bulletin EATCS 81,
2003, pp. 195-225.

6. M. Blum, A machine-independent theory of the complexity of recursive functions. J.ACM
14:2 (1967) 322-336.

7. L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and real computation, Springer, New
York, 1998.

8. O. Bournez, M. Cosnard, On the computational power of dynamical systems and hybrid
systems, Theor. Comp. Sci. 168 (1996) 417-459.

9. O. Bournez, M. Lameiras Campagnolo, D.S. Graça, E. Hainry, Polynomial differential
equations compute all real computable functions on computable compact intervals, Jour-
nal of Complexity 23i (2007) 317-335.

10. M.E. Bratman, Intentions, plans, and practical reasoning, Harvard University Press, Cam-
bridge (MA), 1987.

11. D. Burago, Y. Burago, S. Ivanov, A course in metric geometry, Graduate Studies in
Mathematics, Volume 33, AMS, Providence RI, 2001.

12. R.L. Chrisley, Why everything doesn’t realize every computation, Minds and Machines 4
(1995) 403-420.

13. R.F. Cohen, P. Eades, T. Lin, F. Ruskey, Three-dimensional graph drawing, in: R. Tamas-
sia, I.G. Tollis (Eds),Graph Drawing, DIMACS Int. Workshop, GD ’94, Lecture Notes in
Computer Science 894, Springer, pp. 1-11.

14. M. Davis (Ed.), The undecidable: basic papers on undecidable propositions, unsolvable
problems and computable functions, Raven Press Books, Hewlett NY, 1965, reprinted:
Dover Books, 2004.

15. P.J. Denning, What is computation?, Editor’s introduction, ACM Ubiquity Symposium
What is Computation , Ubiquity, October 2010. See also: Computer J. 55:7 (2012) 805-810.

16. D.E. Deutsch, What is computation?(How) does nature compute?, talk, 2008 Midwest
NKS Conference, Bloomington IN, transcript by A. German, 2008, https://www.cs.

indiana.edu/~dgerman/hector/deutsch.pdf.
17. D.J. Frailey, Computation is process, in: ACM Ubiquity Symposium What is Computa-

tion?, Ubiquity, November 2010, pp. 1-6. See also: Computer J. 55:7 (2012) 817-819.
18. H. Friedman, R. Mansfield, Algorithmic procedures, Trans. Amer. Math. Soc. 332:1 (1992)

297-312.
19. J-L. Giavitto, O. Michel, Data structure as topological spaces, in: C.S. Calude et al. (Eds.),

Unconventional Models of Computation, Third Int. Conference, UMC 2002, Lecture Notes
in Computer Science 2509, Springer, 2002, pp. 137-150.

20. Y. Gurevich, Sequential abstract state machines capture sequential algorithms, ACM
Trans. Comput. Logic 1 (2000) 77-111.

21. Y. Gurevich, Foundational analyses of computation, in: S.B. Cooper, A. Dawar, B. Löwe
(Eds.), How the World Computes, Proc. CiE 2012, Lecture Notes in Computer Science
7318, Springer, 2012, pp. 264-275.

Understanding Computation 99

22. C. Horsman, S. Stepney, R.C. Wagner, V. Kendon, When does a physical system com-
pute?, Proc. Royal Soc. A 470 (2169), 20140182, 2014.

23. C. Horsman, V. Kendon, S. Stepney, J.P.W. Young, Abstraction and representation in
living organisms: when does a biological system compute? In: G. Dodig-Crnkovic, R.
Giovagnoli (Eds), Representation and Reality in Humans, Other Living Organisms and
Intelligent Machines, SAPERE Series Vol. 28, Springer, 2017, pp. 91-116.

24. J.E. Hopcroft, J.D. Ullman, Formal languages and their relation to automata, Addison-
Wesley Publishing Company, Reading, MA, 1968.

25. B.J. MacLennan. Analog computation, in: R.A. Meyers (Ed.), Encyclopedia of Complexity
and Systems Science, Springer-Verlag. New York, 2009, pp. 271-294.

26. A. Mazurkiewicz, Concurrent program schemes and their interpretation, Techn. Rep. PB-
17, DAIMI, Datalogisk Afdeling, Aarhus University, Aarhus, 1977.

27. G.H. Mealy, A method for synthesizing sequential circuits, Bell System Tech. J. 34 (1955)
1045-1079.

28. A.N. Michel, K. Wang, B. Hu, Qualitative Theory of Dynamical Systems: The Role of
Stability Preserving Mappings, 2nd Ed., M. Dekker Inc, New York, 2001.

29. E.F. Moore, Gedanken-experiments on sequential machines, in: C. E. Shannon and J.
McCarthy (Eds), Automata Studies, Annals of Mathematics studies no. 34, Princeton
University Press, Princeton, 1956, pp. 129-153.

30. J.R. Munkres, Topology, 2nd Edition, Prentice Hall Inc, Upper Saddle River, NJ, 2000
(re-published: Pearson).

31. J. Numrich, A metric space for computer programs and the principle of computational
least action, J. Supercomputing 43 (2008) 281-298.

32. G. Piccinini, Functionalism, computationalism, and mental states, Stud. Hist. Phil. Sci.
35 (2004) 811833.

33. G. Piccinini, Computational modelling vs computational explanation: Is everything a
Turing machine, and does it matter to the philosophy of mind?, Australasian Journal of
Philosophy 85:1 (2007) 93115.

34. G. Piccinini, Computation without representation, Philosophical Studies 137.2 (2008)
205241.

35. A. Platzer, Analog and hybrid computation: Dynamical systems and programming lan-
guages, —EATCS Bull. 114, 2014, 49 pages.

36. H. Rogers Jr., An example in mathematical logic, The American Mathematical Monthly
70:9 (1963)929-945.

37. H.T. Siegelmann, S. Fishman, Analog computation with dynamical systems, Physica D
120 (1998) 214-235.

38. S. Stepney, Nonclassical computation - A dynamical systems perspective. In: G. Rozenberg
et al. (Eds.), Handbook of Natural Computing, Springer-Verlag, Berlin Heidelberg, 2012,
Ch 59, pp. 1979-2025.

39. A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5
(1955) 285-309.

40. D. Tong, The unquantum quantum, Scientific American 307: December (2012), 46-49.
41. A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem,

Proc. London Math Soc. 42:1 (publ. 1937) 244-265. Correction: ibid., Proc. London Math.
Soc. 43:6 (publ. 1938) 544546.

42. A.M. Turing, Intelligent machinery, A report by A.M. Turing, National Physical labora-
tory, Teddington, UK, 1948.

43. L.G. Valiant, A bridging model for parallel computations, C.ACM 33:8 (1990) 103-111.
44. J. van Leeuwen, On Floridi’s method of levels of abstraction, Minds and Machines 24:1

(2014) 5-17.
45. J. van Leeuwen, J. Wiedermann, Knowledge, representation, and the dynamics of com-

putation. In: G. Dodig-Crnkovic, R. Giovagnoli (Eds), Representation and Reality in
Humans, Other Living Organisms and Intelligent Machines, SAPERE Series Vol. 28,
Springer, 2017, pp. 69-89.

46. Wikibooks, Topology, http://en.wikibooks.org/wiki/Topology.
47. J. Wiedermann, J. van Leeuwen, How we think of computing today. In: A. Beckmann, C.

Dimitracopoulos, and B. Löwe (Eds.), Logic and Theory of Algorithms, 4th Conference on
Computability in Europe (CiE 2008), Proceedings, Lecture Notes in Computer Science,
Vol. 5028, Springer-Verlag, Berlin, 2008, pp. 579-593.

100 J. van Leeuwen and J. Wiedermann

48. J. Wiedermann, J. van Leeuwen, Rethinking computations. In: M. Brown and Y. Erden
(Eds.), 6th AISB Symp. on Computing and Philosophy: The Scandal of Computation -
What is Computation?, AISB Convention 2013 (Exeter), Proceedings, AISB, 2013, pp.
6-10.

49. J. Wiedermann, J. van Leeuwen, Computation as knowledge generation, with application
to the observer-relativity problem. In: M. Brown and Y. Erden (Eds), 7th AISB Symp.
on Computing and Philosophy, AISB 50 Convention 2014 (London), Proceedings, AISB,
2014, pp. 1-8.

50. J. Wiedermann, J. van Leeuwen, What is computation: an epistemic approach. In: G.F.
Italiano et al. (Eds.), SOFSEM 2015: Theory and Practice of Computer Science, Lecture
Notes in Computer Science Vol 8939, Springer-Verlag, Berlin, 2015, pp. 1-13.

51. J. Wiedermann, J. van Leeuwen, Epistemic computation and artificial intelligence. In:
V.C. Mller (Ed.), Philosophy and Theory of Artificial Intelligence 2017, SAPERE Series
Vol. 44, Springer-Verlag, 2018, pp. 215-224.

52. E.C. Zeeman, The topology of the brain and visual perception. In: K.M. Fort (Ed.),
Topology of 3-Manifolds and Selected Topics, Prentice Hall, Englewood Cliffs, NJ, 1062,
pp. 240-256.

